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Abstract—The recent years have witnessed the remarkable
expansion of publicly available biological data in the related
research fields. Many researches in these fields often require mas-
sive data to be analyzed by utilizing high-throughput sequencing
technologies. However, it is very challenging to interpret the data
efficiently due to it high complexity. This paper introduces two
new graph algorithms which aim to improve the efficiency of the
existing methods for biological network data interpretation. In
particular, the algorithms focus on the problem of how to simplify
gene regulatory networks so that many existing algorithms
can efficiently discover important connected components of a
biological system in their own context as many times as they
need. The performance of the proposed algorithms is compared
with each other with gene expression data of glioblastoma brain
tumor cancer.
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I. INTRODUCTION

Recently, a graph-based representation of biological systems

plays a critical role in identifying molecular interactions in

biomedical research. Biological network analysis is a power-

ful approach to providing the insight of complex biological

systems and the function of cellular components. Biological

networks typically consist of a large number of biological

components such as genes, protein, and metabolic, and its

topological analysis makes the interpretation of the complex

biological networks be feasible.

Complex biological systems are often represented by bio-

logical networks. Protein-Protein Interaction networks (PPI)

and Gene Regulatory Networks (GRNs) are ones of the

most representative biological networks that most research

has focused on. PPI show the physical interactions between

proteins or metabolic and signaling pathways of a cell, where

proteins and their interactions are represented by nodes and

edges respectively [1], [2].

Although PPI are the most intensively analyzed through

many studies, PPI are difficult to make analysis conclusions

due to the heterogeneous data sources. GRNs are comprised of

nodes of genes, and the genes are connected if the expression

of one gene regulates expression of another one by either

activation of inhibition [3]. A gene results in constructing a

single protein. GRNs assume that the gene regulate other genes

if the protein that the gene manufactures controls the rate at

which other genes manufacture proteins. Moreover, genes are

not independent, but acting collectively, where genes regulate

each other.

The expression data for biological networks can be ac-

quired from high-throughput technology such as microarray,

sequencing techniques, mass spectrometry, and protein arrays.

The high-throughput genetic technologies empowers to study

how genes interact with each other. The potential discovery of

important components in biological networks would help one

to identify triggering biological mechanism and treatments for

diseases.

Research in biological networks includes two processes: (1)

network reconstruction, and (2) network analysis. Network re-

construction is a reverse-engineering problem that determines

weights of edges between nodes from high-throughput data.

We also call the problem as a network inference problem.

Although there are multiple types of biological networks [4],

such as boolean networks, probabilistic, Petri nets, we focus

on a standard graph-based network model represented by an

adjacency matrix A where p is a number of node, A ∈ ℜp×p,

and Aii = 0.

The approaches of biological network inference are mainly

three-fold: (1) correlation-based, (2) Bayesian-based, and (3)

regression-based approaches. Correlation-based approaches

identify the interactions between biological components (e.g.,

proteins in PPI and genes in GRNs) by using linear corre-

lation (e.g., Pearson’s correlation coefficient). The biological

networks computes pairwise correlation (−1 ≤ R ≤ 1) or

coefficient of determination (0 ≤ R2 ≤ 1) between nodes

and determines active/inactive interactions if the correlation

coefficient is lower than a certain threshold. Therefore, the

network is undirected graph and lacks the interpretation of

casual effects between the biological components.

WGCNA (Weighted Gene Coexpression Network Analysis)

is a representative method of the correlation-based approaches

in GRNs [5]. Mutual information (MI) [6], maximum informa-

tion correlation (MIC) [7], and conditional mutual information

(CMI) [8], [9] have been also used to determine the edges of

the biological networks. Bayesian-based approaches can infer

casual relationship in a probabilistic manner [10], [11]. How-

ever, Bayesian-based approaches would be infeasible when the

number of nodes is large. On the other hand, regression-based



approaches infer the relationship of nodes by decomposing the

whole network graph into p numbers of regression problems

[12], [13]. Regression-based approaches often use LASSO

solution for generating sparse graphs in GRNs, since it aims to

infer the transcription regulatory interactions between genes.

Network analysis is an essential to analyze and interpret

the biological network, once we obtain the biological network

from the high-throughput data. Biological systems includes

a large number of biological components, so the biological

network may be extremely complicated to analyze.

There are three types of motifs: (1) feed-forward loops

(FFL), single-input modules (SIM), and dense overlapping

regulons (DOR) [14]. Maximum cliques have been used to

discover subgraphs of the biological networks, which may be

DOR motifs in biological networks [15], [16]. A clique is a

subset of a graph, where its induced subgraph is complete.

Finding the largest subset, which is the maximum clique, may

provide biological interpretations of largest biological com-

ponents on the biological system. However, some biological

component groups of interests are not on the assumption.

In this paper, we aim to discover subgraphs that consist

of important biological components connected each other

without the strict criteria such as cliques in biological systems.

We assume that the biological system is represented by an

undirected graph where a node and an edge show a biological

component and their interactions respectively. The discovery

of subgraphs in a large scale of biological networks would

provide interpretable analysis and visualization solutions for

better understanding of the biological system. The main

contribution of this paper includes (a) two greedy graph

algorithms for this purpose, (b) their performance evaluation

with glioblastoma brain tumor cancer data, and (c) the idea of

protecting the privacy of the owners of the biological network.

The rest of this paper is organized as follows. Section II

introduces the formal definition of our problem and our two

new graph algorithms to simplify gene networks by capturing

key components. Section III describes the result of our exper-

imental results. Finally, we conclude this paper in Section IV.

II. PROBLEM DEFINITION AND PROPOSED ALGORITHMS

In this section, we first introduce the formal definition of

our problem of interest as well as its complexity analysis. As

the problem of interest is NP-hard, we propose two greedy

heuristic algorithms in the following subsection.

A. Notations and Problem Definition

In this paper, G = (V,E,wE), where wE : E → R
∗ is an

edge weighted connected graph, where V = V (G) is the set

of nodes in the graph and E = E(G) is the set of edges in the

graph. For any given node subset V ′, G[V ′] is the subgraph

of G induced by V ′. We also notate W (G[V ′]) is the sum of

weight of edges in G[V ′]. Finally, |V ′| notates the number of

nodes in the set.

Now, the formal definition of the problem of our interest is

as follow.

Definition 1 (MT-GNSIP). Given an edge weighted graph

G = (V,E,wE), where wE : E → R
∗ and a positive real

number T , the Maximum Total-edge-weight Gene Network

Subgraph Identification Problem (MT-GNSIP) is to identify a

subset of nodes V ′ from V such that

(a) Optimization Goal 1: W (G[V ′]) is maximized,

(b) Optimization Goal 2: |V ′| is minimized,

(c) W (G[V ′]) ≤ T , and

(d) G[V ′] is connected.

The ultimate goal is to identify sub-graphs of strongly con-

nected components in biological networks, where the lowest

numbers of nodes are included. Since edge weights indicate

the strength of relationship between nodes, the subgraph that

maximizes the total edge weights may indicates the compo-

nents that play critical roles in the biological system. Further-

more, the hyper-parameter T controls either the complexity of

the sub-graph or the hierarchical components in the biological

network.

One can easily see that Optimization Goal 1 and Opti-

mization Goal 2 are opposition with each other, and therefore

this problem is very difficult. That is, in order to optimize a

solution toward Optimization Goal 2, the best possible solution

would be an empty node set. However, such solution would

be very bad with respect to Optimization Goal 1.

B. Two Greedy Graph Algorithms

In this section, we introduce our two different algorithms

for MT-GNSIP, Greedy-Augmenter (Algorithm 1) and Greedy-

Shrinker (Algorithm 2). The input of the both algorithms

consists of G = (V,E,wE), T such that V ← V (G),
E ← {e|e ∈ E(G) and wE(e) ≤ b}, wE is the edge-weight

function from G = (V,E,wE), and T is a threshold value. The

output of the algorithms is a subset of nodes. As we mentioned

earlier, each algorithm assumes that G is a connected graph

and proceeds our discussion during the rest of this paper. In

the final section, we discuss how to deal with the case in which

G is not a connected graph.

Greedy-Augmenter. This algorithm initially picks a node

from V and adds it to V ′. Then, the algorithm iteratively

identifies a node vmax outside V ′ but is neighboring to at

least one node in V ′ such W (G[V ′
⋃
{vmax}]) can be further

maximized while it does not exceed the threshold level T . In

each iteration, the greedy selection of such node reflects both

optimization goals as the algorithm attempts to maximize the

total edge weight sum of the induced graph of G by V ′ and at

the same time, the size of V ′ (or equivalently the total number

of iterations) can be minimized when W (G[V ′
⋃
{vmax}])

cannot grow any further.

Greedy-Shrinker. This algorithm initially copies all nodes

in V to V ′. Then, it iteratively identifies a node vmin from

V ′ such that the removal of the nodes does not affect the

connectivity of G[V ′] and W (G[V ′]) can be minimally re-

duced. The loop finally ends once W (G[V ′]) ≤ T becomes

true. By greedily selecting the minimum vmin, more number

of nodes can be removed from V ′ (Optimization Goal 2).



Algorithm 1 Greedy-Augmenter (G = (V,E,wE), T )

1: Let r be a node in V such that the total weight of the

edges connected to r is maximum. Set V ′ ← {r}.
2: loop

3: for each node vi ∈ V \ V ′ do

4: set pi ← 0.

5: end for

6: for each node vi ∈ V \ V ′ do

7: for each node vj ∈ V ′ do

8: if (vi, vj) ∈ E then

9: pi ← pi + wE(vi, vj).
10: end if

11: end for

12: end for

13: find the maximum pmax such that

W (G[V ′
⋃
pmax]) ≤ T and G[V ′

⋃
pmax] is connected.

14: if no such pmax exists then

15: exit this loop.

16: else

17: set V ′ ← V ′
⋃
{vmax}.

18: end if

19: end loop

20: return V ′.

Meanwhile, due to the greedy strategy, V ′ is gradually losing

least important nodes in order to maintain W (G[V ′]) high

until W (G[V ′]) is just below T (Optimization Goal 1). As a

result, the design of this algorithm well reflects both of the

optimization goals.

III. EXPERIMENTAL RESULTS

We applied our methods to the Glioblastoma (GBM) brain

tumor cancer data, which is available to download from TCGA

(The Cancer Genome Atlas, https://cancergenome.nih.gov)

database. The GBM data contains 528 patient samples, where

there are 12,042 gene expression on each patient. Among the

whole gene expression data, we considered only genes of the

top 500 highest expression in average. The adjacency matrix

(A) was generated by pairwise Pearson correlation coefficient,

but the diagonal matrix of A was set to zeros (no self-loop). We

finally made the network sparse by setting the edge weights

less than 0.3 to zeros. Since the adjacency matrix graph has

more than one connected component, we selected the one

which with the highest edge total weight as an input of our

algorithm.

Then, we performed the two proposed algorithms, greedy-

augmenter and greedy-shrinker, to the GBM data. The hyper-

parameter of T was set as 100.

The greedy-augmenter identified a sub-graph that consists

20 genes and 187 interactions between the genes, and the

greedy-shrinker detected 19 genes and 136 edges. We assessed

the experimental results with a protein-protein interaction

database. The gene lists were introduced to the String database

(http://string-db.org) [17], and compared the interactions of the

genes with our findings.

Algorithm 2 Greedy-Shrinker (G = (V,E,wE), T )

1: Set V ′ ← V .

2: loop

3: for each node vi ∈ V ′ do

4: set pi ← 0.

5: end for

6: for each node vi ∈ V ′ do

7: for each node vj ∈ V ′ such that vj 6= vi do

8: if (vi, vj) ∈ E then

9: pi ← pi + wE(vi, vj).
10: end if

11: end for

12: end for

13: find the minimum pmin such that W (G[V ′ \pmin]) >
T and G[V ′ \ pmin] is still connected.

14: if no such pmin exists then

15: find the minimum pmin such that W (G[V ′ \
pmin]) ≤ T and G[V ′ \ pmin] is still connected. Then,

and remove vmin from V ′.

16: exit this loop.

17: else

18: remove vmin from V ′.

19: end if

20: end loop

21: return V ′.

The sub-graphs that the forward/backward-search methods

identified are depicted in Fig. 1. The blue nodes and edges

indicate new genes and interactions that our proposed methods

found but do not exist in the String database. In the other

hand, the red shows those which are not identified by our

methods but exist in the database. Surprisingly, most genes and

their interactions that we discovered by the proposed methods

are also observed in the String database as high scores (>

0.9). The backward-search method proposed that two genes

of UQCR and SRI may interact with the strongly connected

other genes. Especially, SRI has been reported as a marker

in GBM brain cancer [18], and it also has been claimed that

UQCR is related to brain cells [19].

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed new algorithms that identify

subgraphs of biological networks, which may be important

biological components. We discover the connected-subgraphs

by maximizing the sum of edges while penalizing the number

of node in the subgraph. We applied the proposed methods

to the BGM brain tumor cancer data. The biological network

analysis would provide interpretable solutions to understand

complex biological systems and the interactions of the biolog-

ical components in the system. Our experimental results show

that the proposed algorithms are effective and promising.

In this paper, we assumed that the input graph is connected,

which is not necessarily the case in practice. In order to deal

with this situation, we may need to apply our algorithms for

each connected component. In such case, it is important to
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Fig. 1: Experimental result of (a) greedy-augmenter and (b) greedy-shrinker algorithm with the GBM data

distribute T among components. One idea to distribute T is

based on the total edge weight of each connected component.

As a future work, we plan to further investigate proper

strategies for this purpose.
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