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Abstract—Over years, many efforts are made for the problem
of constructing quality fault-tolerant virtual backbones in wire-
less network. In case that a wireless network consists of physically
equivalent nodes, e.g. with the same communication range, unit
disk graph (UDG) is widely used to abstract the wireless network
and the problem is formulated as the minimum k-connected m-
dominating set problem on the UDG. So far, most results are
focused on designing a constant factor approximation algorithm
for this NP-hard problem under two positive integers k and m
satisfying m ≥ k ≥ 1 and k ≤ 3. Very recently, Shi et. al. and
Fukunaga separately introduced constant factor approximation
algorithms for the problem with m ≥ k ≥ 1. However, we found
the structures of the algorithms are extremely complicated, and
thus it would be difficult to implement and use them in practice.
Motivated by such observation, this paper introduces a novel
approximation algorithm for the problem with m ≥ k ≥ 1. This
algorithm is based on our new technique which first computes a
1-connected m-dominating set D and repeatedly (a) decomposes
D into an i-connected block tree, with i = 2, 3, · · · , k, and
(b) use this graph structure to improve the connectivity of D,
until D becomes k-connected. We provide a rigorous theoretical
analysis to prove that the proposed algorithm is correct and its
approximation ratio is a constant. We compare the structure of
our algorithm against the existing ones and show our algorithm
is much simpler to understand and implement.

Index Terms—Wireless Sensor networks, approximation algo-
rithm design, graph theory, connected dominating set, virtual
backbone.

I. INTRODUCTION

Wireless networks such as wireless ad-hoc networks and
wireless sensor networks are composed of numerous wireless
mobile nodes, and have a number of important applications
such as environment and habitat monitoring, traffic control,
health applications, etc. [13], [14]. In most cases, a wireless
node is battery operated and thus has a limited power source.
In wireless communication, the amount of energy consumed
for a node to transmit a message to another node increases
super-linearly proportional to the distance between them. As
a result, most wireless networks prefer multi-hop communi-

cation over long range direct communication to conserve its
energy.

Unfortunately, the multi-hop communication strategy in-
creases the number of messages flying over the network drasti-
cally and causes a huge amount of wireless signal interference
and collision. As a result, the nodes consume much of its
energy for retransmitting messages and waste lots of energy.
This problem is known as the broadcasting storm problem
and is a serious but inheriting issue in most multi-hop routing
wireless networks [15]. To ease the impact of the problem, one
promising strategy would be having a backbone-like structure
in the wired counterpart so that the number of nodes which
are involved in the routing can be reduced. Based on the
observation, Ephremides et. al [16] suggested to establish a
subset of wireless nodes to be in charge of routing messages
while the other nodes are not. Nowadays, this subset is called
as a virtual backbone (VB) of the wireless network. Recent
studies show that in addition to improve the efficiency of the
wireless network, virtual backbone is known to bring several
advantages to wireless networks as its adoption can be used to
alleviate routing overhead and serve as an efficient platform
for unicast, multicast, and fault-tolerant routing.

A subset of nodes in the unit disk graph (UDG) representing
a wireless network of interest can be a VB in the graph if (a)
the subgraph of the UDG induced by the subset is connected
and (b) all nodes are either in the subset or adjacent to a
node in the VB. In theory, the subset of a graph satisfying
the requirements is referred as the connected dominating set
(CDS). Apparently, a CDS of a UDG is better than another
CDS of the UDG if its size is smaller as that means the CDS
will suffer less from wireless signal interference and collision.
Thus, Guha and Khuller [17] modelled the problem of com-
puting quality virtual backbone as the minimum connected
dominating set (MCDS) problem. The (minimum) dominating
set problem is a well-known NP-hard problem and a general-
ized version of the MCDS problem as it does not require the



induced graph by the subset connected. As a result, the MCDS
problem is also NP-hard, which implies that it is impractical
to compute an optimal solution of a given MCDS problem,
i.g. a minimum size CDS. As a result, many efforts are made
to design and analyze an approximation algorithm for the
problem, which has a worst-case performance guarantee [1],
[2], [3], [4], [5].

In many wireless networks such as wireless sensor net-
works, nodes are subject to fail due to many reasons such as
battery exhaustion or hostile environment. Due to the reason,
the virtual backbone for wireless network is desirable to have
some degree of fault-tolerance, in particular against node
failure. In theory, a graph is k-vertex-connected if the graph
is still connected after the removal of any k− 1 nodes, and a
CDS whose induced graph has a higher level of fault-tolerance
against such node failure. In [22], Dai and Wu investigated
the requirements for a fault-tolerant virtual backbone and
introduced the concept of the k-connected k-dominating set,
or in short, (k, k)-CDS for a given k for the first time in the
literature. In the later discussions, this concept is generalized
as the k-connected m-dominating set, (k,m)-CDS. Formally
speaking, a node subset is a k-connected m-dominating set
if the following requirements are satisfied: given a network
graph G = (V,E) such as UDG, where V is the set of nodes
and E is the set of edges, (a) G[D], the subgraph of G induced
by a node set D, is k (vertex) connected, i.e. G[D\D′] is still
connected for any D′ ⊆ D such that |D′| ≤ k, and (b) D is a
m-dominating set in G, i.e. for any u ∈ V \D, u has at least
m neighbors in D.

The minimum (cardinality) (k,m)-CDS problem is NP-
hard as its special case with k = 1,m = 1, which is the
MCDS problem, is NP-hard. Over recent years, many efforts
are made to design a constant factor approximation algorithm
to construct highly fault-tolerant virtual backbone. Note that
by definition, m ≥ k ≥ 1 is desirable, otherwise, the failures
of m nodes will fail the virtual backbone (i.e. some nodes
will lose all of its neighboring backbone nodes) even though
the backbone is fully operational (i.e. the subgraph induced
by the residual backbone nodes is still connected). Wang et
al. [36] proposed a 2-approximation algorithm for computing
the minimum (2, 1)-CDS problem; Shang et al. [34] introduced
a constant factor approximation algorithm for the minimum
(2,m)-CDS problem, where m ≥ 1. At INFOCOM 2010,
2015, 2016, Kim et al. [12],Wang et al. [9], Zhang et.al
[10] studied the problem of constructing a constant factor ap-
proximation algorithm for the minimum (3,m)-CDS problem,
where m ≥ 3. However, the question of designing a constant
factor approximation algorithm for the minimum (k,m)-CDS
problem is challenging for any m ≥ k ≥ 4.

To the best of our knowledge, there are three constant factor
approximation algorithms to compute the minimum (k,m)-
CDS, one of which by Shi et. al. [6] and two of which by
Fukunaga [7]. While these are great results, the structures of
the algorithms are extremely complicated, and thus it would be
difficult to implement and use them in practice. To address this
issue, this paper proposes a new approximation algorithm for

the minimum (k,m)-CDS problem with m ≥ k ≥ 1. Roughly
speaking, the algorithm is a round based one and each round
consists of the following three steps, where i is initially 2 and
grows up to k.
(a) compute Ci−1,m, which is a (i − 1,m)-CDS of a given

UDG,
(b) decompose the Ci−1,m into components in which there

exists no separating set of Ci−1,m and add a bounded
number of H-paths to connect these components, and

(c) add H-paths to connect components separated by the rest
of separating sets.

As a result, we obtain a new simpler constant factor approxi-
mation algorithm for the minimum (k,m)-CDS problem given
any m, k pair such that m ≥ k ≥ 1.

The reminder of this paper is organized as follows. Sec-
tion II introduces some related work. Several important nota-
tions and definitions are provided in Section III. We present
a new constant factor approximation algorithms for the min-
imum (k,m)-CDS problem in UDG in Section IV. We also
give a theoretical analysis of its performance ratio. Section V
is devoted to discuss the structural difference between the
proposed algorithm and the existing alternatives. Finally, we
conclude this paper and discuss some future research direc-
tions in Section VI.

II. RELATED WORK

Over many years, wireless networks have attracted lots
of attention due to their useful applications [43], [44], [45].
During the past years, a lot of effort has been made to
design approximation algorithms for fault-tolerant connected
dominating set problems in wireless networks. Several ap-
proximation algorithms for constructing (k,m)-CDS have
been proposed in the literature. The problem of constructing
fault-tolerant virtual backbone was first proposed by Dai and
Wu [22]. They proposed three heuristic algorithms o compute
k-connected k- dominating set: a probabilistic algorithm k-
Gossip; a deterministic algorithm, another probabilistic algo-
rithm Color-Based k-CDS Construction. However, none of
them guarantees the size bound of the resulting CDSs.

In [24], Alzoubi et al. proposed a approximation algorithm
to construct a minimum CDS with performance ratio of 8.
In [27], Li et al. provided a distributed algorithm for comput-
ing r-CDS whose performance ratio is 172. In [28], a localized
algorithm was proposed and its performance ratio is 147. Wang
et. al. introduced Connecting Dominating Set Augmentation
(CDSA) in [36]. They proposed an 64-approximation central-
ized algorithm to construct a 2-connected 1-dominating virtual
backbone. This algorithm first constructs a CDS, and then
computes all the blocks and adds intermediate nodes to make
backbone 2-connected. Further, in [34], Shang et al. proposed
a centralized algorithm to construct 2-connected k-dominating
set. They first choose an MIS of G, then choose an MIS k
times, a k-dominating set D can be obtained, finally add H-
path to make D 2-connected. This algorithm has performance
ratio depending on k. Recently, Shi et al. proposed a greedy



algorithm for computing minimum 2-connected m-dominating
set [35], which has a performance ratio of 12.89 for m ≥ 5.

Thai et. al. first introduced a centralized approximation
algorithm to compute k-connected m-dominating set [33]. The
main idea is: first compute a 1-connected m-dominating set;
then calculate a k-connected k-dominating set based on the
first step; at last, construct a k-connected m-dominating set.
In [39], Wu et. al. proposed a centralized approximation algo-
rithm, CGA, and a distributed algorithm, DDA, to construct
k-connected m-dominating sets for any k and m. These two
algorithms CGA, DDA are improved by the algorithms CGA
and DDA, respectively in [40].

Recently, in [12], [41], the authors proposed a new poly-
nomial time algorithm for computing (3,m)-CDS. They first,
compute a (2, 3)-CDS, then iteratively convert the bad point to
a good point by adding H-paths. The performance ratio of this
algorithm is 280. This result is improved greatly by work [9],
the first algorithm apply Tutte decomposition to design a basic
algorithm, which first decomposing the (2,m)-CDS into bricks
and add H-paths to construct the (3,m)-CDS; The second
one is simpler to implement. The performance ratios of these
algorithms are 87 and 62, respectively. In [10], Zhang et.al
used the greedy strategy to design an algorithm for computing
(3,m)-CDS, whose performance ratio is 26.34 for (3, 3)-CDS
on UDG.

In graph theory, a block is a maximal component (i.e.
connected subgraph) without separating set (a subset of nodes
without which, the residual graph becomes disconnected). A
block-tree of a graph is induced by the graph by contradicting
every block into a node, and is a very useful tool to improve
the connectivity of a (k,m)-CDS. For example, in [36], cut-
vertices decompose a CDS into leaf-blocks and blocks to
augment a (1, 1)-CDS to a (2, 1)-CDS. In [9], the unique
Tutte decomposition of 2-connected graphs used to augment
(2,m)-CDS to (3,m)-CDS. In this paper, we highly generalize
this approach to obtain a constant factor approximation for
the minimum k-connected m-dominating set problem in UDG
based on the decomposition of k-connected graph throughout
multiple round-based gradual augmentation of connectivity of
a (1,m)-CDS to (k,m)-CDS.

Very recently, Shi et. al. [6] and Fukunaga [7] independently
introduced three constant factor approximation algorithms for
the problem with m ≥ k ≥ 1. Two of the algorithms (one by
Shi et. al. and another by Fukunaga) aim to compute (k,m)-
CDS directly instead of gradually augmenting connectivity of
a (1,m)-CDS and are based on the algorithm to construct a
subset k-connected subgraph by Nutov [8], whose structure
is highly complicated. Another algorithm by Fukunaga uses a
multiple round-based connectivity augmentation strategy like
ours, but each round involves extremely higher computation
than ours. We further discuss these differences in more detail
in Section V.

III. NOTATIONS AND DEFINITIONS

This section introduces several definitions and notations.

Definition 1 (Unit Disk Graph (UDG)). A graph G =
(V,E) = (V (G), E(G)) on a 2-dimensional euclidean space
is referred as a UDG, if for any pair u, v ∈ V , there exists a
bidirectional edge between them only if the euclidean distance
between them is not greater than 1, i.e. udist(u, v) ≤ 1.

Definition 2 (k-Connected Graph). In graph theory, a graph
G = (V,E) is called a k-connected graph,if k is the size of
the smallest subset of vertices such that the graph becomes
disconnected if you delete them. An equivalent definition is
that a graph G with at least two vertices is k-connected if,
for every pair of its vertices, it is possible to find k node-
disjoint paths connecting these nodes.

Definition 3 (m-Dominating Set). Given a graph G = (V,E),
we call a vertex v dominated by a vertex u if there exists an
edge (u, v) ∈ E. A subset D ⊂ V is an m-dominating set if
every vertex v in V \D is dominated by at least m vertices
in D.

Definition 4 (k-Connected m-Dominating Set). A subset D ⊂
V is a k-connected m-dominating set ((k,m)-CDS) of graph
G = (V,E) if, (i) D is an m-dominating set of G and (ii) the
induced subgraph G[D] is k-connected.

In this paper, (k,m)-CDS is abbreviated as Ck,m, and both
represent a k-connected m-dominating set.

Definition 5 (Vertex Cut or Separating Set). G = (V,E)
is a k-connected graph, if there exists a subset S =
{u1, u2, ..., uk} ⊂ V whose removal renders the induced
graph G \ {u1, u2, ..., uk} disconnected, then S is called a
vertex cut (or vertex separator, separating set).

Definition 6 ((a, b)-Separator). In graph theory, given G =
(V,E), a vertex subset S ⊂ V is a vertex cut (or vertex
separator, separating set) for non-adjacent vertices a and b if
the removal of S from the graph separates a and b into distinct
connected components. Then we call S a (a, b)-separator.

Definition 7 (H-path). Given a graph G, an H-path P of a
subgraph H is a path between two different nodes in H such
that no inner node of P is in H .

In later discussion, given a graph G = (V,E), we call a
vertex v adjacent to a set of vertices S = {s1, ..., sk} if there
exists at least one node si ∈ S such that edge (v, si) ∈ E.
Further, we call a node set V1 = {v1, v2, ..., vs} adjacent to
another set of vertices U1 = {u1, ..., ut} if there exists at least
an edge (vi, uj) ∈ E, where vi ∈ V1 and uj ∈ U1.

Definition 8 (Augmentation Problem). Given a k-connected
graph G = (V,E), and a (k − 1,m)-CDS D of G, find a
subset H ⊂ V \D with minimum size such that the induced
subgraph D ∪H is k-connected.

Now, we introduce a decomposition of the k-connected
graph, which plays an important role in the designing of our
algorithm.

As we know, if a graph G is a k-connected graph, but
not a (k + 1)-connected graph, there must exist at least one



1
v

(a)

2
v

4
v

3
v

5
v 6

v
4
v

5
v 6

v

4
v

5
v

1
B

6
v

2
B

(b)

(c)

+ +

+

(d)

1
B

2
B 3

B

B
3

Fig. 1. (a) 3-connected graph, (b) {v1, v2, v3} is a separating set which
separates the graph into two components; (c) {v1, v2, v3} is also a separating
set of the sub-component; (d) the resulting tree, B1, B2, B3 are the nodes.
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k } separating G such that

G[V \ S1] into several components. For better visualization,
we can consider these components as two components G[C1]
and G[C2], where C1 ∩ C2 = S1, and C1 ∪ C2 = V .
Next, for G[C1], if there exists a separating set S21 ⊂ C1

of G, we decompose G[C1] into G[C
(1)
1 ] and G[C

(2)
1 ], where

C
(1)
1 ∩C

(2)
1 = S21, and C

(1)
1 ∪C

(2)
1 = C1; for G[C2], we apply

the same decomposition rule, smaller components G[C
(1)
2 ] and

G[C
(2)
2 ] are obtained. The above process can go on, until there

exists no separating set Si ⊂ Cj of G in each component
G[Cj ].In other words, G[Cj ] cannot be divided into smaller
components with the removal of any k nodes in Cj . Finally,
when G has been decomposed into components B1, B2, ..., Bp

with the corresponding separating set S1, S2, ..., Sq , we can
construct a tree whose nodes is the components B1, B2, ..., Bp,
and if the components Bi and Bj are separated by some
separating set, there exists an edge between the node Bi and
Bj . When G is a 2-connected graph, according to the above
definition, G is decomposed into 3-connected components and
triangles.

More precisely, we introduce the following G = (V,E) is a
k-connected graph, S1 = {s(1)1 , s

(1)
2 , ...., s

(1)
k } is the separating

set which separates G into C1 and C2, C1 ∩ C2 = S1. Then
we add an virtual edge between any pair s

(1)
i , s

(1)
j , (i, j =

1, 2, ..., k) if there exists no edge (s
(1)
i , s

(1)
j ) ∈ E, with the

virtual edges, C̃1 and C̃2 is obtained. Next, if there exists
a separating set S2 of C̃1, or S3 of C̃2, the decomposition
moves on. Similarly, construct the graphs by adding virtual
edges between the nodes in S2 and S3. This terminates until
there is no separating set in each sub-component.

Fig. 1 (d) illustrates an example of a resulting tree from the
decomposition result in Fig. 1 (a).

One important thing to note about this decomposition
method is that, the above decomposition is not unique. Though
once the separating set is verified, the graph can be decom-
posed into smaller components. This differs from the Tutte
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Fig. 2. (a) 2-connected graph, (b) the graph is divided into 3-connected bricks
and rings by Tutte decomposition; (c) the graph is divided into 3-connected
bricks and triangles; (d)(e) are illustrations of the decomposition tree.

decomposition, which needs to find the split-separator. It is
known that after Tutte decomposition is completed, the nodes
in different bricks can not constitute a separating set. However,
for the above decomposition, this is not always true. e.g.,Fig. 1
shows an example, {v4, v5, v6} is a separating set.

IV. MAIN RESULTS

In this section, we propose our constant factor approxima-
tion algorithm for the k-connected m-dominating set problem
with any m ≤ k ≤ 1.

A. A new constant factor approximation algorithm for the
minimum (k,m)-CDS

In this section, we present a new constant factor approxima-
tion algorithm for computing (k,m)-CDS. The rough outline
of this algorithm is as follows:

(a) Given an input UDG G = (V,E) which has a feasible so-
lution (and therefore it is k-connected), the algorithm first
computes a (1,m)-CDS D using an existing algorithm.

(b) For each i = 2 to k, we repeat the following steps until
G[D] becomes a (k,m)-CDS:

(i) Recursively decompose G[D] into a set of compo-
nents (connected subgraphs), each of which does not
contain a separating set. In detail, initially, check
G[D] has a separating set, and if so, D is split into
three subsets; a separating set S, and two nodes
subsets DL and DR, which are separated by S,
i.e. G[DL] and G[DR] are disconnected. The same
procedure is recursively applied to DL and DR

and more separating sets inside each of them are
identified in a recursive manner.

(ii) Whenever we find DL and DR have no separating set
inside during the course of the recursive procedure
above, add a bounded number of H-paths (a path
from a node in DL to another node in DR) with
length at most 3 to G[D] so that the separating set
can be removed (not separating set anymore).



Algorithm 1 A New Constant Algorithm for Computing
(k,m)-CDS, m ≥ k

1: Compute (1,m)-CDS and set D ← (1,m)-CDS.
2: for i = 2 to k do
3: if there is a separating set S1 of G[D] then
4: repeat
5: Decompose G[D] into the (sub-)components.
6: until there is no separating set in each (sub-

)components.
7: end if
8: Add H-paths to connect the components, H1 denotes

the intermediate nodes of all the H-paths added.
9: if there is a separating set of G[D ∪H1] then

10: repeat
11: Add an H-path to connect the components.
12: until there is no separating set. Let H2 denote the

intermediate nodes of the H-paths added.
13: end if
14: D ← D ∪H1 ∪H2

15: end for
16: Return D

(iii) So far, all of the separating sets shared by two
components are removed, but there may exist some
separating sets between two remote components.
Those separating sets are removed by adding a
bounded number of H-paths with length at most 3.

(iv) As a result, the connectivity of G[D] is increased by
1.

After the execution of the algorithm, a (k,m)-CDS is returned.

B. Performance Analysis

In this section, we provide theoretical analysis to show Al-
gorithm 1 is in fact a constant factor approximation algorithm
for the minimum (k,m)-CDS.

Lemma 1. After the decomposition of a k-connected graph
G = (V,E) is completed, S = {S1, S2, ..., Sp} is the
corresponding separating set, and B = {B1, B2, ..., Bq} is
the components. T is a separating set, for any i = 1, 2, ..., q,
T 6⊂ Bi. If T separates G into C1, C2,...,Cr, for any Cj , there
must exist some Si ∈ S such that Cj ∩ Si 6= ∅.

Proof. There are several cases:
• Case 1:T = T1 ∪T2, T1 ∩T2 = ∅, and T1 ⊂ (Ba \ (Ba ∩

Bb)), T2 ⊂ (Bb \ (Ba ∩ Bb)). First, we claim that there
must exist Sc such that Ba∩Bb = Sc, otherwise, T can-
not be a separating set. Since if Ba ∩Bb 6⊂ S, according
to the decomposition, there must exist at least one Bd

between them. It is obvious that (Ba \T1) and (Bb \T2)
are connected via Bd. By contradiction, assuming that T
separates G into C1, C2,...,Cr, there exists a component
Cj , for any i, Cj∩Si = ∅. Without loss of generality, we
assume Cj ⊂ (Ba \Sc), i.e., for Ba, Cj is only adjacent
to T1. However, after the decomposition completed, the
nodes in Ba \ Sc is connected to the nodes in Bb \ Sc
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Fig. 3. (a) an illustration of Case 1. (b) an illustration of Case 2.
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only via Sc. And |T1| < k, this contradicts with the fact
that the original graph is k-connected. Fig. 3 (a) helps to
understand.

• Case 2: T = T1∪T2∪T3, Ti∩Tj = ∅ (i, j = 1, 2, 3), and
T1 ⊂ (Ba\(Ba∩Bb)), T2 ⊂ (Bb\(Ba∩Bb)), Ba∩Bb =
Sc, T3 ⊂ Sc. Similarly, based on the decomposition, for
Ba, the nodes in Ba \ Sc cannot communicate with the
nodes in Bb \ Sc only by T1 ∪ T3. Otherwise, Ba can be
separated by T1 ∪ T3, however, |T1| + |T3| < k, this is
against the the fact that the size of separating set is k.

• Case 3: T = T1∪T2∪T3, Ti∩Tj = ∅ (i, j = 1, 2, 3), and
T1 ⊂ Ba, T2 ⊂ Bb, T3 ⊂ Bc, from the above analysis,
there must exist S1, S2 ∈ S such that Ba ∩ Bb = S1,
Bb∩Bc = S2. Assuming T1 ⊂ Ba \S1, T2 ⊂ Bb \ (S1∪
S2), and T3 ⊂ Bc\S2; the node set B1\(T1∪S1) cannot
be only adjacent to T1, B2 \ (T2 ∪ S1 ∪ S2) cannot be
only adjacent to T2; the node set B3\(T3∪S2) cannot be
only adjacent to T3. Thus, all the components separated
by T has at least one node in some Si.

• Case 4: T = T11 ∪ T12 ∪ T2 ∪ T3, and T11, T12 ⊂ Ba,
T2 ⊂ Bb, T3 ⊂ Bc, Ba ∩ Bb = S1, Bb ∩ Bc = S2.And
T11 ⊂ Ba \ S1, T12 ⊂ S1, T2 ⊂ Bb \ (S1 ∪ S2), and
T3 ⊂ Bc \ S2; Ba \ (T11 ∪ T12) must connect Bb \ S1

via S1 \T12, otherwise, T11∪T12 separates Ba, however,
|T11|+ |T12| < k.

If T consists of the nodes from more than 3 components,
the proof is similar.



Lemma 1 is crucial to our performance ratio analysis.

Lemma 2. After the decomposition is completed, S =
{S1, S2, ..., Sp} is the corresponding separating set, and Si =
{si1, si2, ..., sik} (i = 1, ..., p). If there exists no (six, s

j
y)-

separator where (i, j = 1, ..p), (x, y = 1, ..k), there is no
separating set.

Proof. From Lemma 1, except for the separating set
S1, S2, ..., Sp, all the other separating sets are (six, s

j
y)-

separator. Thus, when we add H-paths in Line 11, at least
one pair (six, s

j
y) cannot be separated any more.

According to Lemma 2, apparently, the number of the H-
paths added in Line 11 can be bounded.

Lemma 3. For any k-connected graph G, let x be a new
vertex which is adjacent to at least (k + 1) vertices in G,
then the graph G

′
obtained from G by adding x has no new

separating set.

Since the node added into Ck−1,m is at least m-dominated
by Ck−1,m, we have the following

Lemma 4. The number of the intermediate nodes of the H-
path is at most two.

Theorem 1. The output D ∪H1 ∪H2 is k-connected.

Proof. Line 8 and Line 11 guaranteed the output D∪H1∪H2

is k-connected.

Theorem 2. Algorithm 1 is a constant factor approximation
for computing (k,m)-CDS.

Proof. First, if the (i,m)-CDS D (i = 1, ..., k − 1) is
decomposed into B1, ..., Bq with the corresponding separating
sets S1, ..., Sp, we have

q < |Ci,m| = n. (1)

By the definition of decomposition,

|B1|+ |B2|+ ...+ |Bq| = n+ p× i. (2)

Since after the decomposition finished, |Bj | ≥ i+1 for any
j = 1, 2, ..., q. Thus,

(i+ 1)× q ≤ n+ p× i, (3)

i.e., n+(p− q)× i ≥ q. Obviously, q−p = 1, so we obtained
the following n− i ≥ q.

From Lemma 2 and Lemma 3,

|H1| ≤ 2× p, |H2| ≤ 2× p× i(i− 1)/2, (4)

Thus,

|C∗i+1,m| ≤ |Ci+1,m| = |Ci,m|+ |H1|+ |H2| (5)

≤ n+ 2n+ ni(i− 1) = (i2 − i+ 3)n (6)

As i varies from 2 to k, each augmentation incurs approx-
imation factor of O(22), O(32), · · · , O(k2), respectively.

As a result, Algorithm 1 has a constant performance ratio of
is O((k!)2) = O(22)×O(32)× · · · ×O(k2) with k ≥ 3.

V. STRUCTURAL COMPLEXITY ANALYSIS AND
COMPARISON

In this section, we study the structural complexity of our
algorithm (Algorithm 1) against the existing alternatives by
Shi et. al. [6] and Fukunaga [7]. We use Fig 5 to illus-
trate the main steps of these algorithms. Our algorithm (see
Fig 5(a)) first recursively decomposes the (i,m) − CDS
(with i = 1 as the initial round and i grows up to k − 1
by 1 in each round) with the corresponding separating sets
S = {S1, S2, ..., Sp}. In this decomposition, we only need
to find the separating set arbitrarily in each sub-component
(instead of computing all of the separating sets). After we
add H-paths to convert these separating sets, we continue to
add H-paths to construct G[D ∪ H1] k-connected. Our core
strategy is similar to one of the algorithm in [7] (see Fig 5(b)),
but is much simpler than that due to the following reasons:
The algorithm in [7] finds the minimal separating set in each
iteration in a round. This means that the same separating set
may be identified many times in each round. The algorithm
in [6] first compute m-dominating set D, and then applies an
algorithm to compute a k-connected subgraph F on terminal
set D. This algorithm is based on an approximation algorithm
for computing minimum node-weighted Steiner network, and
subset k-connected subgraph. Different from the augmentation
problem, this algorithm computes the k-subgraph directly.
This algorithm is based on a primal-dual strategy and incurs
excessively high complexity and running time compared to the
augmentation based strategies.

VI. CONCLUSION

In this paper, we investigated the problem of constructing
highly fault-tolerant virtual backbone, i.e, computing a (k,m)-
CDS in wireless networks, where k and m are a pair of
integers satisfying m ≥ k ≥ 1. We propose a constant factor
polynomial time approximation algorithm to compute (k,m)-
CDSs based on decomposition of the graphs. In the future,
we will focus on developing approximation algorithm for the
minimum k-connected m-dominating set problem with better
performance ratio and simpler structure.
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