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Online social relationships which can be extracted from various online resources such as

online social networks are getting much attention from the research communities since
they are rich resources to learn about the members of our society as well as the relation-

ships among them. With the advances of Internet related technologies, online surveys

are established as an essential tool for a wide range of applications. One significant issue
of online survey is how to select a quality respondent group so that the survey result

is reliable. This paper studies the use of pair-wise online social relationships among the
members of a society to form a biased survey respondent group, which might be useful

for various applications. We first introduce a way to construct a homophily-high social

relation graph. Then, we introduce the minimum inverse k-core dominating set problem
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(MIkCDSP), which aims to compute a biased respondent group using the homophily-
high social relation graph. We show the problem is NP-hard and most importantly

propose a greedy approximation for it. Our simulation based on a real social network

shows the proposed algorithm is very effective.

Keywords: dominating set, social networks, approximation algorithm, k-core, vertex con-

nectivity, homophily

1. Introduction

These days, online surveys are established as an essential tool for a wide range of

applications such as marketing and political decision making. It is known that in

2006, around 20% of global data-collection expenditure was spent for online sur-

vey research [2]. In 2012, US spent more than $1.8 billion for all survey research

spending [3]. There are a number of reasons, not to mention its low cost (than

the traditional methods), that online survey becomes so popular [4]. In online sur-

vey researches, how to find a right sample group of respondents is a long lasting

conundrum since this is directly related to the reliability of the survey.

Frequently, a biased survey respondent group is considered to be lack of relia-

bility. This is because the result from a survey is mainly used to obtain an averaged

statistical information about the general public by consulting with a sample group

from the public, and the survey result from a sample group without representative-

ness is not reliable for this purpose. Due to the reason, many efforts are made to

find a representative and unbiased respondent group [3]. However, the bias in the

survey is not always something to avoid. Consider a product quality manager of a

new smartphone, e.g. iPhone 5c, who wants to collect the feedback via an online

survey from users so that he/she can improve the quality of the product. Also,

suppose most of the customers using the product are happy with it. Then, while

the manager is only interested in hearing complaints from the users, it is likely that

the online survey result from the respondents selected by the methods whose com-

mon goal is to make the result representative and unbiased, would be mostly about

their satisfaction about the new product. As a result, such survey is quite waste-

ful in practice to the manager only interested in complaints. Therefore, it would be

helpful to form a biased respondent group so that it includes more unsatisfied users.

Recently, online social relationships which can be extracted from various online

resources such as online social networks are receiving lots of attentions as they are

rich sources to learn about the interest of each member as well as the relationship

among them. Due to the reason, the online resources are investigated for a wide

range of applications [5,6,7,8,9,10,11,12]. This paper investigates the use of pair-

wise online social relationship information to compute a biased but representative

respondent group such that the rate of the minority opinion group (e.g. those who

are not satisfied with the product) in the respondent group can be magnified. To the

best of our knowledge, this is the first effort in the literature which exploits online

social relationships to enhance to the quality of online minority opinion survey.

The rest of this paper is organized as follows. Section 2 describes how to con-
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struct a desirable input of the proposed algorithm, a homophily-high social relation

graph, in which two nodes are adjacent only if they share similar opinion on a subject

of interest from readily available pair-wise online social relationships. In Section 3,

we introduce several important notations and definitions. Especially, we introduce

the formal definition of our problem of interest, the minimum inverse k-core dom-

inating set problem (MIkCDSP), corresponding justification, and its NP-hardness

result. Section 4 proposes a new greedy approximation algorithm for MIkCDSP by

exploiting the homophily-high graph. Some case study simulation result and anal-

ysis using a real social network is presented in Section 5. Finally, we conclude this

paper in Section 6.

2. Construction of Homophily-high Social Relation Graph

In this section, we introduce a new approach to compute a very special social rela-

tion graph from readily available pair-wise social relations. The resulting graph has

the following two interesting features. First, any two adjacent nodes in the graph

are likely to have a similar opinion on the subject of interest. In other word, the

homophily [13] of the graph should be high. Second, the average degree of nodes in

the majority opinion group should be higher than the average degree of the whole

graph.

Our proposed method construct a new social relation graph as follows. Given a

subject of interest and the members of a society, an existing data mining techniques

such as [14] is used to compute the pair-wise social proximity among the members

on the subject. The accuracy of this step is out of the scope of this paper and

we just assume their existence. Then, for each member of the society, we add a

corresponding node to the graph. Next, for each pair of members, we set an edge

between them only if their opinion is similar on the subject than a threshold level.

Clearly, the resulting graph is with higher homophily as the threshold becomes

smaller. Note that if we have a majority opinion group in the whole society, their

average node degree should be higher than the average degree of the graph as they

have more neighbors. Therefore, the graph constructed in this way strictly satisfies

the two properties.

By the construction, it is apparent that any two nodes whose opinions are sig-

nificantly different are not adjacent in the resulting graph. Now, we verify that the

constructed graph satisfies the second property that we discussed earlier via a simu-

lation. In this simulation, we have 1000 nodes, and each node has a weight between

0 to 1, but the distribution strictly follows exponential distribution, and therefore,

most of them has a weight closer to 0. Then, in the graph constructed by following

the method above with threshold value 0.05, average node weight is 0.083422 and

average node degree is 445.37. Meanwhile, the number of nodes whose node weight

in the generated graph is smaller than the average (0.083422) is 613 > (1000/2),

and the average degree of those nodes is 561.151713 > 445.37. This means that the

nodes with weight smaller than average forms the majority and at the same time,
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the majority group’s average node degree is higher than the average node

degree in G. As a result, G satisfies these two requirements.

3. Notations, Definitions, and Problem Statement

In this paper, G = (V,E) represents a homophily-high social relation graph with a

node set V = V (G) and an edge set E = E(G). We assume the relationship between

the members are symmetric and thus the edges in E are bidirectional. Also, we use

n to denote the number of nodes in V , i.e. n = |V |. For any subset D ⊆ V , G[D] is

a subgraph of G induced by D. For each node v ∈ V , Nv,V (G) is the set of nodes

in V neighboring to v in G. Given a graph G, a subset D ⊆ V is a dominating set

(DS) of G if for each node u ∈ V \D, ∃v ∈ D such that (v, u) ∈ E. Given a graph

G, the goal of the minimum dominating set problem (MDSP) is to find a minimum

size DS of G. Given a graph G, a subset D ⊆ V , and a positive integer k which is

no greater than ∆, the maximum node degree of G, D is an inverse k-core in G if

for each v ∈ D, |Nv,D(G)| ≤ k.

In this paper, we study an online survey sample (a group of survey respondents)

selection problem such that the rate of minority opinions from the sample can

be higher than their rate in the overall group. In G, by construction, a subset of

nodes whose average degree is smaller has a better chance to include higher rate

of minority opinion holders. Meanwhile, the concept of DS has been widely used

to select a quality representative group for the whole society (e.g. clusterheads in

wireless networks) in many existing researches. Therefore, it would be desirable to

compute a DS such that the average degree of the DS nodes in G is minimized.

However, there is one drawback of this approach. That is, there can be more than

one minority opinion in the society. Therefore, it is more desirable to limit the

number of the neighbors of each DS node in G is limited in the whole DS. Given a

homophily-high social relation graph G, a subset D ⊆ V , and a positive integer k,

D is an inverse k-core dominating set (IkCDS) of G if (a) D is a DS of G and (b) for

each v ∈ D, |Nv,D(G)| ≤ k. Certainly, IkCDS is suitable for our purpose based on

the discussions so far. Meanwhile, it is noteworthy that there are a number of ways

to compute IkCDS of a social relation graph. Apparently, it is more desirable to

reduce the size of IkCDS since it will cost less for the actual survey. As a result, the

problem of computing a biased online survey respondent group can be formulated

as MIkCDSP shown below. Given a graph G and a positive integer k, a minimum

inverse k-core dominating set (MIkCDS) is an IkCDS of G of minimum cardinality.

Finally, the minimum inverse k-core dominating set problem (MIkCDSP) aims to

find a minimum size IkCDS of G.

Remark 3.1. It is noteworthy that as k decreases, the DS will be more diversified

and biased and the rate of minority opinion in the survey will increase. At the same

time, the size of the IkCDS will decrease. This means that with very small k value,

the survey respondent set can be very small and less practical given that the usual

degree of social relation graphs is not small. On the other hand, with very high k
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Algorithm 1 Greedy-MIkCDSA (G = (V,E), k)

1: Prepare an empty set D, i.e. D ← ∅.
2: For each vi ∈ V , prepare a counter ni which is initialized to 0, i.e. ni ← 0.

3: Suppose Xj = {vi|vi ∈ V and ni = j}.
4: while X0 ̸= ∅ do
5: Find vi ∈ V \

(
(
∪

j≥k Xj)
∪
D

∪
Q
)
so that |Nvi,X0(G)| is maximized, where

Q = {w1, ... , wq} such that wl ∈ Q has at least one neighbor in (
∪

j≥k Xj) and

wl ∈ D is true. A tie can be broken arbitrarily.

6: Set D ← D ∪ {vi}.
7: for each node vj ∈ Nvi,V (G) do

8: nj ← nj + 1.

9: end for

10: end while

11: Output D.

value, the survey respondent group can be negligibly biased, which also may not be

desirable for our application. While selecting proper k value is very significant, it is

also application dependent. Since this question is the out of this paper, we assume

that k value is given as a part of the inputs of the problem.

Theorem 3.2. MIkCDSP is NP-hard.

Proof. A special case of MIkCDSP with k = ∆ is equivalent to the minimum

dominating set problem, the problem of computing a minimum size dominating set

of G, which is proven to be NP-hard [15]. As a result, MIkCDSP is NP-hard.

Remark 3.3. Given any graph G and a non-negative integer k, there exists a

feasible solution of MIkCDSP in G. This claim is true since (a) a feasible solution

of MIkCDSP with k = 0 is clearly a feasible solution of MIkCDSP with any k ≥ 1

(as the condition that each DS node cannot have any neighboring DS node is stricter

than the condition that each DS node can have at most k ≥ 1 DS node(s)), and

(b) the following coloring strategy can be used to compute an independent set of

G, the subset of nodes in G which are pairwise disjoint with each other, which is a

feasible solution of MIkCDSP with k = 0: (i) initially color all nodes white, (ii) pick

each white node turn into black and its neighbors in gray until there is not white

node left, and (iii) return the set of black nodes. Clearly, the set of black nodes is a

dominating set and each pair of black nodes are not neighboring from each other.

4. Greedy-MIkCDSA: A Greedy Approximation for MIkCDSP

In this section, we introduce Greedy-MIkCDSA, a simple greedy strategy for

MIkCDSP and show that its performance ratio is ∆, where ∆ is the maximum de-

gree of the input social relation graph. The formal description of Greedy-MIkCDSA
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is Algorithm 1. Given an MIkCDSP instance (G, k), Greedy-MIkCDSA first pre-

pares an empty set D (Line 1), which will eventually include the output, an inverse

k-core dominating set (IkCDS) of G. For each node vi ∈ V , we create a counter ni

which is initialized to 0 (Line 2). The counter will be used to track the number of

neighbors of vi in D. Depending on the counter, we create a partition of the nodes

in V , X0, X1, ... , where Xj is the subset of nodes in V whose counter is j (Line 3).

This means that initially X0 is equal to V and each of the rest is empty. Clearly,

the number of the subsets is bounded by n. From Lines 4-10, we iteratively pick a

node vi from
(
(
∪

j≥k Xj)
∪
D

∪
Q
)
, i.e. vi is a node which is (a) with a counter ni

whose value is less than k (i.e. has less than k neighbors in DS), (b) not selected

as a DS node yet, and (c) without any neighboring node wl which is in D and, at

the same time, in Xj for some j ≥ k, such that the number of neighbors of vi in

X0 is the maximum. Any tie can be broken arbitrarily. This loop is repeated until

all nodes in V is either in D or dominated by some node in D while maintaining

G[D], the subgraph of G induced by D, as an inverse k-core.

Clearly, Algorithm 1 produces a feasible solution of MIkCDSP since the algo-

rithm repeatedly constructs D until X0 becomes empty (which means D is a DS of

G) and by Line 5, the degree of G[D], the graph induced by D in G, will be bounded

by k (which means D is an inverse k-core). One may wonder if there is a situation

in which some node x, which has to be included in D to dominate some other node

y, cannot be included in D since it has already k neighbors in D. However, this

never becomes a problem since if x cannot be selected, then y itself will be included

in D by our algorithm, which means that D is always a valid output. Now, we show

Algorithm 1 is a ∆-approximation algorithm for MIkCDSP.

Lemma 4.1. Given a graph G = (V,E), let OPTMDSP and OPTMIkCDS be an

optimal solution of MDSP and an optimal solution of an MIkCDSP instance (G, k)

for some k ≥ 1, respectively. Then, |OPTMDSP | ≤ |OPTMIkCDS |.

Proof. By definitions, the goal of MDSP is to find a DS of G with minimum

cardinality and the goal of MIkCDSP is to find a DS of G with minimum cardinality

such that for each node in the DS, the node is allowed to be adjacent with at most

k other nodes in the DS. Therefore, in any given G, an IkCDS of G is also a DS

of G, but our choice of IkCDS is more limited than that of DS. As a result, this

lemma is true.

Lemma 4.2. Given a graph G = (V,E), suppose we have an α-approximation

algorithm of MDSP such that the output O of the algorithm is also a feasible solution

of MIkCDSP. Then, we have |O| ≤ α|OPTMIkCDS |.

Proof. As discussed in the proof of the previous lemma, clearly, an output O of

Algorithm 1 is a dominating set and therefore a feasible solution of MDSP. By

the definition, if Algorithm 1 is an α-approximation algorithm of MDSP, then we
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Fig. 1. All nodes in Pi is adjacent to oi. Pi may contain several nodes in D, which is an output of

Algorithm 1.

have |O| ≤ α|OPTMDSP |. By combining this with Lemma 4.1, we have |O| ≤
α|OPTMDSP | ≤ α|OPTMIkCDS |, and thus this lemma is true.

Now, we show that this α is ∆ (Lemma 4.3) and therefore, Algorithm 1 is an

∆-approximation algorithm for MIkCDSP (Theorem 4.4).

Lemma 4.3. The performance ratio of Algorithm 1 for MDSP is ∆, where ∆ is

the maximum degree of G.

Proof. Given G = (V,E) and k, consider OPTMDSP = {o1, o2, ... , ol} be a

minimum DS of G. Then, for each oi ∈ OPTMDSP in the increasing order of i, we

compute

P1 = {o1}
∪

No1,V \OPTMDSP
(G),

and

Pi =
(
{oi}

∪
Noi,V \OPTMDSP

(G)
)
\
( ∪

1≤j≤i−1

Pj

)
for i ̸= 1.

That is, P1 is the union of the first node in the optimal solution OPTMDSP and its

neighbors except the other nodes inside OPTMDSP in G. Likewise, Pi is the union

of the i-th node in the optimal solution OPTMDSP and its neighbors except the

other nodes inside OPTMDSP as well as except those in P1∪P2∪ · · · ∪Pi−1 in G.

Clearly, V is partitioned into P = {P1, P2, ... , Pl} such that each Pi ∈ P exactly

includes one oi ∈ OPTMDSP .

Suppose Algorithm 1 is applied to (G, k) and outputs D = {z1, z2, ... , zp} (see
Fig. 1). Then, we have the following two important observations. First, all nodes in

Pi is adjacent to oi. Second, each Pi can include some nodes in D (e.g. {zq1 , zq2 , zq3}
in Fig. 1). Therefore, the size of Pi

∩
D is bounded by ∆ (the node degree of oi in
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(a) Minimum dominating set. (b) Minimum inverse k-core dominating
set.

Fig. 2. Selected dominating nodes by each strategy.

G[Pi]), and we have |D| ≤ max1≤i≤l |Pi ∩D| · |OPTMDSP | = ∆ · |OPTMDSP |, and
this lemma is true.

Theorem 4.4. The performance ratio of Algorithm 1 for MIkCDSP is ∆, where

∆ is the maximum degree of G.

Proof. The proof naturally follows from Lemma 4.2 and Lemma 4.3.

5. Case Study

In this section, we evaluate the performance of Algorithm 1 using one real social

network example, the jazz musician social network [16] under the assumption that

this social network graph satisfies the two properties discussed in Section 2. This

social network with undirected edges represents the collaboration network of jazz

musicians. In this simulation, Algorithm 1 is compared with an existing approxima-

tion algorithm for the minimum dominating set problem by Guha and Khuller [17]

since it can be one trivial way to solve MIkCDSP and there is no existing algorithm

designed directly to compute MIkCDSP. Fig. 2 shows the output of each algorithm

with the jazz musician social network graph as an input. Note that the subset of

dark blue nodes constitutes the dominating set (output). We acknowledge that a

social network visualization tool called Cytospace [18] is used for this visualization.

Following our discussion in the earlier part of this paper, we assume a node with

a higher degree is more likely to be a member of the majority group. In Fig. 2,

it is clear that Algorithm 1 outperforms the minimum connected dominating set

algorithm in terms of average node degree. Meanwhile the size difference of the

dominating set is not significant (14 vs. 16 out of hundreds nodes).

In Fig. 3, we evaluate the performance of Algorithm 1 by comparing the average

degree of the dominating nodes generated by Algorithm 1 with that of the dominat-

ing nodes by the minimum dominating set (approximation) algorithm by Guha and
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Fig. 3. Cumulative degree distribution of (a) InputGraph: the all nodes in the input graph, (b)

MIkCDS: the nodes in the output of our Algorithm 1 with k = 6, and (c) MCDS: the nodes in
the output of an existing approximation algorithm for the minimum dominating set problem by

Guha and Khuller.

Khuller [17] as well as the average node degree of whole graph. In this figure, x-axis

represents the degree of nodes and y represents the cumulative distribution of the

nodes (up to the specified degree) in the dominating set (or the whole graph). In

this simulation, note that, we fix k to 6. From this figure, we can clearly learn that

Algorithm 1 successfully select a biased (minority) representative subgroup (domi-

nating set). In detail, the percentage of the nodes whose degree is no greater than

10 in the output of MIkCDSA is almost 50% while that of the nodes in the output

of the minimum dominating set algorithm is around 20% which is similar to the

graph average. As a result, in case of the jazz musician social network, Algorithm 1

effectively constructs a biased (minority) representative group.

6. Concluding Remarks

This paper introduces a new approach to use the pair-wise social relationships to

enhance the result of minority opinion survey. To perform this task efficiently, we

introduce a new NP-hard optimization problem, propose a new greedy heuristic

algorithm for it, and show the algorithm in fact has a theoretical performance

guarantee. We also introduced a way to compute a desirable input graph for the

proposed algorithm. To the best of our knowledge, this is the first attempt in the

literature to use online social relation information to improve the result of biased

online survey. Our approach requires the expected similarity of the opinions between

each pair of users from readily available online social relation to construct the biased

respondent group. Therefore, it is rather localized and consumes less resources than

analyzing the opinion of each user for a subject and find the minorities, and thus

is more practical in big data environment. As a future work, we plan to further

investigate the use of online social relationships to improve the reliability of online

voting systems as well as other uses of our homophily-high social relation graph.
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