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Abstract. This paper introduces a new optimization problem which

aims to develop a distribution plan of vaccines which will be supplied

over time such that an epidemic can be best suppressed until a complete

cure for it is invented. We first exploit the concept of temporal graph to

capture the projected images of the evolving social relations over time

and formally define the social-relation-based vaccine distribution plan-

ning problem (SVDP2) on the temporal graph. Then, we introduce a

graph induction technique to merge the subgraphs in the temporal graph

into a single directed acyclic graph. Next, we introduce a max-flow algo-

rithm based technique to evaluate the quality of any feasible solution of

the problem. Most importantly, we introduce a polynomial time enumer-

ation technique which will be used along with the evaluation technique

to produce a best possible solution within polynomial time.

1 Introduction

In 2014, the world have witnessed the unprecedented spread of critical disease

called Ebloa, which is transmittable from an infected person, who has spent

a certain incubation period after the initial infection, to another healthy one

via direct contact to bodily fluid from the infected. After the seriousness of the
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disease was recognized, many efforts were initiated to expedite the development

of vaccines to stop the further spread of the disease as well as of a complete

cure for it. During last one year, a number of vaccines were tested and several

approaches to cure infected ones were tried, which saved several lives. However,

the disease is still spreading and many people are dying while the researches for

the vaccines and cures are ongoing. Unfortunately, there is no guarantee that

Ebloa is the last pandemic on this scale. As a result, the proper preparedness

against such calamity is of great urgency to save lives, possibly in the near future.

It is not difficult to imagine that even a vaccine is once invented against a new

pandemic, its near-term availability would be highly restricted. As a result, the

development of proper distribution strategy of vaccines over healthy individuals

is as important as inventing vaccines and cures of unknown pandemic to reduce

the number of the victims of the critical epidemic once happens. Recently, Zhang

and Prakash [1] used the information from social relationship to address the

issue of selecting those to be vaccinated when the number of currently available

vaccines is limited. In this approach, two adjacent nodes with high probability

implies there is a great chance of infection from one to the other. This social

relation based approach could be promising as the disease usually is transmitted

one to another following their (physical) social interaction. However, we found

that there is generally a lack of efforts to utilize this approach.

In order to fill this deficiency, this paper investigates the best way to dis-

tribute available vaccines which will be supplied over time by exploiting the

projected social relations among the members of a society with the objective of

minimizing the number of infected people until a complete cure is invented. The

list of the contributions of this paper is as follows.

(a) We introduce a new optimization problem, namely social-relation-based vac-

cine distribution planning problem (SVDP2), which aims to study the best

strategy to distribute regular vaccine supplies over time with the objective

of minimizing the number of infected until a complete cure is developed.

(b) We use the concept of temporal graph [10] to capture the projected images

of the evolving social relations over time. Then, we introduce a new strategy

to reduce the graphs in the temporal graph into a single directed acyclic

graph (DAG). Finally, we redefine the proposed optimization problem on

this new DAG.



(c) We introduce a new maximum-flow algorithm based strategy to evaluate the

performance of any feasible solution of SVDP2.

(d) We propose a polynomial time exact algorithm for SVDP2 by exploiting our

evaluation strategy.

The rest of this paper is organized as follows. Related work is discussed in

Section 2. The formal definition of SVDP2 is in Section 3. Our main contribution,

the polynomial time exact algorithm for SVDP2 is in Section 4. Finally, we

conclude this paper in Section 5.

2 Related Work

We realize that there are several problems which are previously well-studied in

the literature. Therefore, we need to explain how our problem is fundamentally

different from them. Largely speaking, there are three group of problems related

to ours.

Fire-fighter Problem and Its Variations [4–6]. There are two variations

of the the fire-fighter problem [5]. In the context of our problem of interest,

the first version, namely MAXSAVE, aims to find a valid vaccine strategy over

time to maximize the number of uninfected after a given period. The second

version, MINBUDGET, attempts to find a valid vaccine strategy to save the

members in a given node subset with a given graph such that the budget for

the vaccines (the number of nodes removed) used this purpose is minimized. At

a glance, MAXSAVE is similar to our problem of interest, SVDP2. However,

SVDP2 is more challenging as MAXSAVE uses a static topology graph while

SVDP2 considers a social relation graph which varies over time.

Graph-cut Problems [2, 3]. The main objective of graph-cut problem is that

given a graph, to identify a subset of nodes such that after the nodes in the

subset are removed from the graph, the resulting graph consists of two connected

components in a way that a certain objective function is maximized. One example

of such objective is that each of the components should have one designated

node s (and t), respectively and the size of the component including t becomes

maximized. The main challenges to use a solution for the graph-cut problems for

SVDP2 are that (a) the former one assumes we have enough vaccines to contain

the epidemic, which is not necessarily true in SVDP2, and (b) the former one

also assumes a static graph, which is not necessarily true in our case.



Data-Aware Vaccination Problem [1]. Recently, Zhang and Prakash have

investigated the data-aware vaccination problem, the problem of how to best

distribute currently available k vaccines over healthy individuals so that the

expected number of victims can be minimized with the knowledge of the infection

probability from one to another under the assumption that infection of a patient

to another happens only one time. In their work, the knowledge of the social

network graph which represents the relationship between the people is used to

evaluate the likelihood of the disease transmission. Then, a greedy strategy is

used to find the best k healthy nodes in the graph such that the average number

of patients are minimized. This work is very remote from our work as (a) there

is no concept of time-dimension in their work, e.g. an infected individual may

infect its neighbor only one time with a probability and the vaccines are only

provided at the beginning, and (b) the social network graph is fixed.

Based on our survey, we can conclude that there is no existing work which

is directly used to solve SVDP2. In the following section, we provide the formal

definition of SVDP2.

3 Problem Definition

This paper uses a temporal graph [10] G = {G0 = (V0, E0), G1 = (V1, E1), · · · , GT =

(VT , ET )}, where Gt ∈ G captures the social relation among the members of so-

ciety at the t-th unit moment from the initial moment (0-th moment) to the

final moment (T -th moment). After the final moment, it is highly anticipated

that a complete cure of the disease will be developed. The time gap between two

consecutive moments could range from an hour to weeks. For instance, in case

of Ebola, usual incubation time is 2 weeks, and this can be used as a reason-

able gap. From the initial relationship among the members in the society, and

corresponding graph G0, the temporal graph G can be generated by an existing

strategy such as [8]. We assume there is a threshold to determine if there should

be an edge between a pair of nodes at a moment, which implies that two mem-

bers at the moment are close enough to infect each other in case that one of them

is infected with very high probability. Note that the accuracy of this approach

is out of the scope of this paper, and we simple assume that the algorithm used

for this purpose is highly precise.



Now, due to the gravity, we list our main assumptions in more detail and

corresponding justifications if necessary.

(a) The temporal graph G = {G0 = (V0, E0), G1 = (V1, E1), · · · , GT = (VT , ET )}
representing the social relationship of the members of the society at each

moment is known in advance, and is precise. After T unit moments later, a

complete cure of the disease will be developed. Any Gi and Gi+1 may differ

in node set or edge set as the relationship can be highly dynamic.

(b) The initial set of infected people I0 in G0 is known in advance. Ii will be

used to represent the set of infected people in Gi.

(c) After each unit moment from Gi to Gi+1, the neighbors of Ii in Gi will be

infected in Gi+1. We argue that our approach considers the worst-case (in

which the infection ratio from two people is 100% if they are related) and

thus would be more rigorous to deal with a critical disease like Ebola rather

than the probabilistic approach considered by Zhang and Prakash [1].

(d) The initial vaccine supply Q = {Q0 = (p0 = 0, q0), Q1 = (p1, q1), · · · , Ql =

(pl, ql)} are know in advance, where Qi = (pi, qi) ∈ Q is the information of

ith vaccine supply and pi is the arrival moment of qi vaccines.

(e) Shortly after time T , the complete cure for the disease will be developed.

Now, we provide the formal definition of our problem of interest.

Definition 1 (Social-relation-based Vaccine Distribution Planning Prob-

lem (SVDP2)). Given G,Q, I0, and T , the goal of SVDP2 is to find the best

vaccine distribution schedule of the incoming vaccines under the infection model

such that the total number of infected people after T unit moments is minimized.

4 Main Contributions

4.1 Consolidating G to Integrated Graph Ĝ

Apparently, G is difficult to deal with as Gi and Gi+1 in G may differ in node

sets and edge sets for any i. To overcome the difficulty, we introduce a graph

consolidation technique to merge the graphs in G to a new graph Ĝ = (V̂ , Ê),

and redefine SVDP2 using Ĝ. This consists of the following steps.

(a) Node set construction: Set V̂ ←
∪

0≤i≤T V (Gi), where V (Gi) is the set

of nodes in Gi. Each node v
(i)
j represents the status of node vj at the i-th
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Fig. 1. (Figure (a) illustrates the time temporal graph G which consists of a series of

graphs G1, G2, G3, G4 representing the social relation at each moment. Figure (b) shows

the integrated graph Ĝ which is induced graph G. In this graph, node a, b, c, d, e, f, g are

fake nodes and does not exist. This means that e cannot be infected at the beginning.

moment. In case that there exists a node v
(i)
j ∈ Gi for some i, but v

(k)
j /∈ Gk

for some k, then add a virtual node w
(k)
j to V̂ , e.g. nodes {a, b, c, d, e, f, g}

in Fig. 1(b).

(b) Edge set construction: First, add a directed edge from v
(i)
j ∈ V̂ (or alter-

natively w
(i)
j ) to v

(i+1)
j ∈ V̂ (or alternatively w

(i+1)
j ) for each i and j pair:

this means an infected node j at i-th moment will stay infected in i + 1-th

moment (even though the node is outside the area abstracted by the social

network). Second, for each v
(i)
j ∈ Gi and its neighbor v

(i)
k ∈ Gi, add a direct

edge from v
(i)
j to v

(i+1)
k (or its virtual node w

(i+1)
k ) to Ê: this means that a



Fig. 2. In this graph, v0 and v2 are initially infected, and an available vaccine is given

to v4 at the initial moment. Then the maximum flow from s to t is equivalent to the

number of infected nodes after the T -th moments, which is 4 in this example.

node neighboring to an infected node at i-th moment will keep infected in

i+ 1-th moment.

The original infection rule can be applied in a way that when v
(i)
j is infected,

then its neighbors will be infected, and so on. Due to this, the resulting graph

Ĝ has the following two interesting property.

(a) Once a node v
(i)
j is infected, then all v

(k)
j s such that k > i will be infected.

(b) Once a node v
(i)
j is vaccinated, then all v

(k)
j s such that k > i will be vacci-

nated.

This means that once we decide a vaccine to v
(i)
j , then all of the nodes v

(k)
j such

that k ≥ i can be removed from Ĝ. In fact, this is a unique property which

distinguishes our problem with the rest of the existing related problems.

4.2 Evaluation of Feasible Solution

In this section, we introduce a max-flow algorithm based strategy to evaluate a

feasible solution of SVDP2. In detail, given an integrated graph Ĝ = (V̂ , Ê), we

first add two nodes s, t to V̂ . Then, add an edge from s to the nodes in V̂ which



are initially infected. Then, set the edge capacity of all nodes in the current Ĝ

to be ∞. Next, for all nodes at the T -th moment, we add an edge from each of

them to t with an edge capacity 1 (see Fig. 3). Suppose the resulting graph is

Ĝ′. Then, we prove the following theorem.

Theorem 1. The maximum s− t flow in Ĝ′ after removing a subset of nodes S

which received vaccines, i.e. if a node v
(i)
k ∈ S receives a vaccine, then all nodes

v
(j)
k with j ≥ i and their corresponding edges are removed from Ĝ′, is equivalent

to the number of infected people after the T -th moment.

Proof. Let IT be the subset of nodes got infected in the final time t = T . Let

f be a maximum flow with value |f | for the constructed network in Fig. 2. We

claim that for the maximum flow f , the flow must be one on the directed edge

(vTi , t) for any vTi ∈ IT . Otherwise, notice that for each vTi ∈ IT , there is a

directed path from s to vTi (since vTi got infected at moment T ). We can take

the directed path (s → vTi → t) as a augmenting path, and increase the flow

on every edge of the path by one (note the capacity of each edge from s to vTi

is infinity, so we can increase the flow as we wish). Then the new flow value

would increase by one; contradiction to the maximality of f . Therefore, we have

|f | = |IT |.

4.3 Polynomial Time Exact Algorithm based on Enumeration

In this section, we discuss how the best possible solution of SVDP2 can be

computed within polynomial time. Our strategy consists of the following steps.

(a) Our key observation on this step is that as we stated in Theorem 1, once

a node v
(i)
k receives a vaccine, then all nodes v

(j)
k with j ≥ i and their

corresponding edges are removed from Ĝ′. Based on this observation, we

first construct a subset X
(i)
k = {v(i)k , v

(i+1)
k , · · · , v(T )

k } for each node v
(i)
k in

V (Ĝ′)\
(
{s, t}

∪
V (G0)

)
. Note that X

(i)
k in fact is the subset of nodes which

should be removed from Ĝ′ once we determined to give a vaccine to v
(i−1)
k .

This takes polynomial time as the number of such subset X
(i)
k is equivalent

to the size of V (Ĝ′) \
(
{s, t}

∪
V (G0)

)
.

(b) Consider Q = {Q0 = (p0 = 0, q0), Q1 = (p1, q1), · · · , Ql = (pl, ql)}. For each
Qi, we are allowed to pick qi nodes in Ĝ′ after the pi-th moments and give

a vaccine to it, which will eliminate all corresponding nodes (i.e. the nodes

in the corresponding X
(i)
k ) from Ĝ′.



Fig. 3. In this graph, v2 can be vaccinated when t = 0, which will make X
(0)
2 =

{v(1)2 , v
(2)
2 , v

(3)
2 } removed from the graph, or when t = 1, which will make X

(1)
2 =

{v(2)2 , v
(3)
2 } removed from the graph.

Given Q, the number of all possible choices to select nodes to give a vaccine

is bound by
(
n
qT

)
= O(nqT ), where q = max1≤i≤T qi. Then, we just need to

pick the best one among the all possible choices.

As a result, we obtain a polynomial time exact algorithm for SVDP2. Now, we

show the correctness of this algorithm.

Theorem 2. Given T and q = max1≤i≤T qi being fixed. The proposed strategy

computes the best possible solution within polynomial time.

Proof. Note all possible choices strategy of giving of vaccines to nodes in Ĝ

is bounded by O(nqT ). And According to Theorem 1, each time when can we

use max-flow algorithm to compute the number of infected nodes, which runs

in polynomial time. Thus, the time complexity of our is polynomial under the

given assumptions.

5 Concluding Remarks and Future Works

During the recent decade, we have witnessed several new epidemics which has

threatened the existence of mankind. In most cases, it took a long time to pro-



duce sufficient amount of effective vaccines, and it took even long to invent a

complete cure of it. Therefore, it is of great importance to develop an efficient

strategy to minimize the impact of the epidemic while only a limited amount

of vaccines are available. This paper aims to open a discuss on this research di-

rection, which is relatively not well understood yet. Our approach uses existing

social relationship project strategies to capture the images of evolving social re-

lation which are used to predict the routes of infection of a critical disease. Then,

we develop a polynomial time exact algorithm to establish vaccine distribution

plan based on the knowledge of future vaccine production and the exacted time

to discover a complete cure. We believe that this work shows one significant

potential of the information from social network, which is already considered

to be with rich set of information for various applications [11–15]. As a future

work, we plan to further study the problem to introduce a faster algorithm for it

because the running time of our algorithm is very large even though it is poly-

nomial. We are also interested in real data to validate the actual effectiveness of

the proposed approach.
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