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Abstract

One promising solution to improve the efficiency of wireless networks is to
control the number of nodes involved in multi-hop routing by employing vir-
tual backbone. On the one hand, a virtual backbone becomes more efficient
as its size is getting smaller. However, as the size of a virtual backbone is
getting smaller, the throughput of the virtual backbone is degraded since the
length of a routing path between a pair of nodes through the virtual backbone
can be much longer than their hop distance in the original network. Due to
the reason, several efforts are recently made to identify a virtual backbone
including a shortest path between every pair of nodes in the original graph.
In this paper, we investigate a new strategy to compute higher throughput
virtual backbone in wireless networks. We employ a new information the-
oretic metric called spectral-efficiency by Chen et al. and propose a new
virtual backbone computation algorithm in homogeneous wireless networks
with some interesting theoretical analysis. Our simulation results indicate
our algorithm produces a virtual backbone with higher spectral-efficiency
than the existing alternatives. We also conduct another simulation using
OMNet++ and show the virtual backbone produced by our algorithm has
the highest throughput.

1Corresponding Author

Preprint submitted to Ad Hoc Networks May 22, 2014



Keywords:
wireless networks, virtual backbone, shortest path, higher throughput,
spectral-efficiency.

1. Introduction

Recently, the concept of virtual backbone has been introduced to im-
prove the efficiency and performance of wireless networks. The main idea of
this approach is to establish a connected subset of nodes in a wireless net-
work such that any two nodes can communicate with each other through the
nodes in the subset. In essence, this approach decreases the number of nodes
involved in message routing and reduces the amount of signal collision and
interference. Meanwhile, it is apparent that such benefits can be magnified as
the size of the subset becomes smaller. In [5], Guha and Khuller formulated
the problem of computing a smallest virtual backbone in a given network
graph as the minimum connected dominating set (CDS) problem. Since the
minimum CDS problem is NP-hard in various network graphs, many efforts
are made to introduce approximation algorithms for the problem.

Over years, the network community has tried to introduce a new metric
for better routing algorithms. Frequently, these algorithms are built on a link-
layer level abstraction of network, which does not fully consider the impact
of the physical layer. Therefore, those algorithms do not concern about the
fundamental performance limits of wireless communication such as spectral-
efficiency. However, spectral-efficiency is an important concept in wireless
networks since higher spectral-efficiency means higher network throughput [1,
2]. In [31], the authors showed that given an one-dimensional linear network,
there exists an optimal number of hops, which is not necessarily the shortest
hop, in terms of maximizing end-to-end spectral-efficiency. In [28], Chen et
al. introduced a new metric to find a spectral-efficient routing path in multi-
hop wireless networks and proposed spectral-efficient routing algorithms.

To the best of our knowledge, there have been five research papers con-
cerning about the routing cost in the construction of virtual backbone [17,
16, 19, 20], and all of them share the same motivation: the cost of routing
over a virtual backbone computed by a minimum CDS algorithm can be
high. This is because any two nodes which are very near to each other in the
original network graph may need to communication with each other using a
very long routing path through the virtual backbone, which will degrade the
performance of the wireless network.
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In this paper, we investigate how to improve the throughput of a virtual
backbone in wireless networks. We observe that all of the existing CDS com-
putation algorithms with routing cost consideration use the number of hops
as the cost metric of a routing path. Inspired by Chen et al. work which
showed a path with higher spectral-efficiency is with higher throughput than
a shortest hop path, we propose a new virtual backbone computation algo-
rithm incorporating their spectral-efficiency metric so that we can obtain a
virtual backbone with higher throughput. The contributions of this paper are
as follows. First, based on the spectral-efficiency metric in [28], we define the
maximum spectral-efficient connected dominating set (MSE-CDS) problem
whose goal is to compute the most spectral-efficient virtual backbone in ho-
mogenous wireless networks. We also show this problem is NP-hard. Second,
we propose a new algorithm for MSE-CDS, namely spectrum-efficient virtual
backbone generater (SE-VBG). We show the correctness of our algorithm and
provide the proofs of some interesting characteristics of the algorithm. Third,
via simulation, we compare the average performance of our algorithm against
the existing competitors. Our simulation results show SE-VBG produces a
CDS with higher spectral-efficiency. Last, using a comprehensive simulator,
OMNet++, we show the virtual backbone produced by our algorithm is with
higher throughput than the existing competitors. As a result, our algorithm
outperforms the competitors in terms of throughput, a performance metric of
real importance, instead of the other existing abstract performance metrics,
the size of virtual backbone and the average hop distance.

The rest of the paper is organized as follows. Related work is given in
Section 2. In Section 3, we provide some preliminaries. The formal definition
of MSE-CDS is given in Section 4. The description of our algorithm SE-
VBG and corresponding analysis are in Section 5. We present the simulation
results and corresponding discussions in Section 6 and conclude this paper
in Section 7.

2. Related Works

Over many years, virtual backbone has been studied as a promising ap-
proach to improve the efficiency of wireless networks. Since the benefit of
the virtual backbone can be augmented as its size becomes smaller, many
efforts are made to find smaller size virtual backbone. It is well-known that
the minimum CDS problem is NP-hard in unit disk graph (UDG), and thus
many people focused on the design of approximation algorithm for this prob-
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lem [5, 14, 15, 7]. In most cases, a dominating set (DS) is identified and
some more additional nodes whose number is bounded by a constant factor
of the DS are added to make the nodes in the DS connected. Frequently, a
maximal independent set (MIS) is used as an approximation of the minimum
DS problem, which is also NP-hard. In [8], Wan et al. showed the the size
of an MIS is bound by 4 · |optMCDS| + 1, where |optMCDS| is the size of an
optimal CDS optMCDS, for the first time. Later, the bound is tightened by a
series of attempts such as [9, 10, 11, 12, 13]. To the best of our knowledge,
the most tight bound is in [12], which states the size of any MIS is bounded
by 3.4306 · |optMCDS|+ 4.8185.

One crucial performance issue in the virtual backbone based routing is
that the virtual backbone may not include the shortest path between a pair
of nodes. As a result, any two nodes which are only a few hops far in the
original network may need to communicate through a number of intermedi-
ate virtual backbone nodes. Clearly, this can reduce the performance (i.e.
throughput) of the wireless networks adopting virtual backbone. In [18], Kim
et al. discussed the importance of routing cost in virtual backbone construc-
tion for the first time. They also studied a joint optimization problem of
minimizing the size of CDS and the diameter of CDS, and proposed a cen-
tralized algorithm and a distributed algorithm which have a constant factor
approximation ratio for each of the optimization goals. In [17], Ding et al.
introduced a polynomial time exact algorithm to compute a minimum size
CDS including every pair of shortest paths between each pair of nodes in
a given general graph. In [16], Ding et al. proposed a (1 − ln 2) + 2 ln δ-
approximation algorithm for the minimum routing cost CDS problem, whose
goal is to find a minimum size CDS of a given general graph including at
least one shortest path between every pair of nodes in the graph. Later,
Ding et al. also extended this result into a wireless networks with directional
antennas [19]. In very recent report by Du et al., the problem of computing a
minimum CDS including a path for each pair of nodes whose length is bound
by a constant factor α of the shortest path length between the nodes in the
original UDG is studied [20], in which the authors proposed a centralized
algorithm and a distributed algorithm for the problem and prove that the
size of an output of their algorithms is bounded by 148 · |optMCDS|+208 and
α is in fact 7 in their algorithms.

Over many years, several metrics for routing algorithms in wireless net-
works have been proposed by both information theory community [22][34]
and networking community [25][26][27]. In [28], Chen et al. pointed out
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the results from information theory community is too complicated to use in
practice and the results from networking community mostly focus on hop
distance, which does not fully consider the impact of the physical layer. Pre-
viously, the authors in [31][23] found that there is a path with an optimal
number of hops, not necessarily the shortest path, in terms of maximizing
end-to-end spectral-efficiency. Based on this result, Chen et al. considered
the problem of computing a maximum spectrum-efficiency routing path in
multi-hop wireless networks, with the constraint of equal bandwidth sharing,
and proposed two efficient heuristics for sub-optimal solution. In [29], Sadd
improved this result and proposed a polynomial time optimal algorithm for
this problem. In this paper, we investigate if Chen et al.’s result can be
applied to the design of virtual backbone to improve its spectral-efficiency
and consequently its throughput.

3. Preliminaries

In this section, we briefly introduce the network model, channel model,
and spectrum-efficient routing metric. In [28], the authors claim that from
the information theoretical point of view, any two nodes can communicate
with each other with a sufficiently low rate and thus they use a connected
graph to abstract a given wireless network, and studied the spectral-efficient
routing problem over the graph. However, in practice, if two nodes are far
enough, the communication link between them is too inefficient to be used in
practice. Therefore, we assume that any two nodes whose distance is greater
than a threshold level is disconnected and use UDG G = (V,E) to abstract
a wireless network, where V is the set of nodes and E is the set of edges
between every pair of nodes. During the rest of this paper, N = |V | and
M = |E|. For each communication link e ∈ E, s(e) and r(e) are the sender
end and receiver end of e, respectively. Also, |e| is the Euclidean distance of
the link e. A path L from a node v0 to another node vn consists of a sequence
of distinct links e1, e2, · · · , em ∈ E such that (i) s(e1) = v0, (ii) r(em) = vn,
and (iii) r(ej−1) = s(ej), where 2 ≤ j ≤ m. |L| is the length of L, which is
the number m of hops in the path.

This paper adopts a standard path-loss model such that the path-loss
factor over an edge e is given by Ge = c[max(|e|, Df )]

−α, where Df is the
far-field distance [35], α is the path-loss exponent (typically between 2 to
4), and c is a constant. Since |e| is much greater than Df in reality, we
can simplify the path-loss model as Ge ≈ c|e|−α. We properly normalize
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the transmission power of the nodes and c = 1, which are good enough
for relative performance comparison. In addition, we also assume additive
white Gaussian noise N0, which corrupts the signal received by each receiving
end of the links in the network, is equivalent for all receivers. We further
follow the system model of Haenggi and Puccinelli [36], and assume that
the transmission power of all senders is equally P . At last, we assume that
the wireless communication links in the network has a finite bandwidth B.
Under the assumptions made so far, the network signal-to-noise ratio (SNR)
can be defined as SNRe =

PGe

N0B
= P

N0B|e|α . By [23], given optimum bandwidth
allocation among links, the maximum spectral efficiency along L is(∑

e∈L

1

log (1 + SNRe)

)−1

,

which will be maximized when
∑

e∈L
1

log (1+SNRe)
becomes minimized since

log (1 + SNRe) > 0. Then, from [37], under the restriction of equal band-
width sharing, the end-to-end spectral efficiency of L is

SE(L) = min
e∈L

(
(1/|L|) log (1 + SNRe)

)
, (1)

where 1/|L| is multiplied due to the sharing of bandwidth among relay links.
The implication of Eq. (1) is that for a path L, the quality of signal corre-
sponds to the worst SNR of a link in L (SNRe∗ = mine∈L SNRe) and the
bandwidth use is proportional to the inverse of the number of hop, |L|. The
value of the spectral efficiency Eq. (1) increases as SNRe∗ increases or |L|
decreases. For the routing paths connecting a given source and destination, if
|L| increases (or decreases), there are more (or less) relay nodes and SNRe∗

is more likely to increase (or decrease) due to shorter (longer) inter-relay
distances. During the rest of this paper, we define the weight of a path L as

weight(L) = min
e∈L

log (1 + SNRe), (2)

and using this, we can simply Eq. (1) to

SE(L) = weight(L)/|L|. (3)

4. Maximum Spectral-Efficient Connected Dominating Set (MSE-
CDS) Problem

In the literature, it is widely believed that the smaller the size of a virtual
backbone is, the better the performance of a wireless network employing the
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virtual backbone can be boosted since the backbone will incur less overhead
for routing and thus the network will suffer less from wireless signal collision
and interference. Recently, several efforts are made to incorporate the cost
of routing as another metric to form a virtual backbone in wireless networks.
The motivation of the series of researches is that when the size of a virtual
backbone is minimized, the length of routing path between a pair of nodes
over the virtual backbone can be much longer than the length of shortest
path between them in the original graph.

In this paper, we focus on the computation of CDS to form a virtual back-
bone in homogeneous wireless network (e.g. a wireless network of a number of
nodes with the same physical performance) with the goal of achieving higher
throughput. Motivated by Chen et al.’s work, we employ spectral-efficiency
as a metric instead of hop distance and strive to design a CDS computation
algorithm generating a virtual backbone with higher throughput.

Now, we present some notations and provide the formal definition of our
problem of interest, MSE-CDS. Given two nodes vi, vj ∈ V , Pij is the set of
paths between the two nodes in G. Also, p∗ij ∈ Pij is the maximum spectral-
efficient path between vi and vj. Then, from Eq. (3), we can define

SE(p∗ij) = max
pij∈Pij

SE(pij). (4)

Definition 1 (MSE-CDS). Given a wireless network abstracted as a con-
nected UDG G = (V,E), the maximum spectral-efficient connected dominat-
ing set (MSE-CDS) problem is to find a minimum cardinality node set D ⊆ V
such that (i) ∀u ∈ V \D, ∃v ∈ D such that (u, v) ∈ E, (ii) the induced graph
G[D] is connected, and (iii) ∀vi, vj ∈ V , p∗ij\{vi, vj} ⊆ D, where p∗ij is a
maximum spectral-efficiency path between vi and vj in G.

Definition 1 dictates that the goal of MSE-CDS is to compute a minimum
CDS D of G including the most spectral-efficient path between every pair of
nodes in G. Now, we show that MSE-CDS is NP-hard.

Theorem 1. The MSE-CDS problem is NP-hard.

Proof. We prove MSE-CDS is NP-hard by showing that in G̃, a subclass of
UDG in which the lengths of all the edges are the same, MSE-CDS is equiv-
alent to a known NP-hard problem, the minimum routing cost connected
dominating set (MOC-CDS) problem in [16]. First of all, observe that in
G̃, all paths between any pair of nodes have the same path weight which
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is defined in Eq. (2). Therefore, for any pair of nodes in G̃, the maximum
spectral-efficiency routing path between them (defined in Eq. (3)) is equiva-
lent to the shortest path. Since the goal of MOC-CDS is to find a minimum
cardinality CDS which includes at least one shortest path for every pair of
nodes in a given connected UDG, MSE-CDS is equivalent to MOC-CDS in
G̃. As a result, this theorem holds true.

5. SE-VBG: A New Heuristic for MSE-CDS

Let us first introduce a new centralized algorithm for MSE-CDS, namely
spectrum-efficient virtual backbone generater (SE-VBG), and provide the
analysis of some interesting characteristics of the algorithm. Consider a con-
nected UDG G = (V,E) which is an abstraction of a given homogenous
wireless network. For each node vi ∈ V , we define the set Ni of neighbors
of vi in G, i.e. Ni = {vj|vj ∈ V and (vi, vj) ∈ E}. Also, for each pair of
nodes vi and vj, we define a shortest path between the nodes as sp(vi, vj)
and its hop count as |sp(vi, vj)|. Initially, G has a weight neither on edge
nor node. However, from now on, we assume that each edge e ∈ E has a
weight of WL(e) = log (1 + SNRe), and each node vi ∈ V has a weight of
WN(vi) = minvj∈Ni

WL(vi, vj), where WL(vi, vj) is the weight of the edge
between vi and vj. At last, we use Eq. (2) as the weight of a path L, i.e.
weight(L) = mine∈L log (1 + SNRe). Now, we introduce two key lemmas,
Lemma 1 and Lemma 2, in the design of our algorithm for MSE-CDS.

Lemma 1 ([29]). Consider a connected UDG G = (V,E). For any pair
of nodes vi, vj ∈ V , the problem of computing a maximal spectral efficiency
route p∗ij from vi to vj in G satisfying Eq. (4) is equivalent to computing a
path pw

∗
ij such that

SE(pw
∗

ij ) = max
w∈WL

[
max

pij∈Pij ,weight(pij)≥w
SE(pij)

]
, (5)

where WL = {WL(e)|∀e ∈ E}.

Lemma 2. The problem of computing pw
∗

ij in Lemma 1 is equivalent to the
problem of computing pspij such that

SE(pspij ) = max
w∈WLsp

[
max

pij∈Pij ,weight(pij)≥w
SE(pij)

]
, (6)

where WLsp = {WL(e)|WL(e) ≥ weight(sp(vi, vj)), e ∈ E}.
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Algorithm 1 SE-VBG (G = (V,E))

1: Set I ← ∅, C ← ∅, and D ← ∅. For each link e ∈ E, compute WL(e) =
log(1 + SNRe).
/* Step 1 Begins */

2: Compute an MIS I of G. For each node bi ∈ I, set Ii = {v|v ∈ V \I and
(bi, v) ∈ E}.
/* Step 2 Begins */

3: For each pair of bi, bj ∈ I (i ̸= j), find the shortest path sp(bi, bj) between
them and calculate the weight of the shortest path based on Eq. (2).

4: For each node bi ∈ I, compute its weight WN(bi) = minv∈Ii{WL(bi, v)}.
5: For each pair of bi, bj ∈ I (i ̸= j), weight(bi, bj)

∗ =
min{weight(bi, bj)sp,WN(bi),WN(bj)}.
/* Step 3 Begins */

6: Set Etemp ← ∅, and for each pair of bi, bj ∈ I; i ̸= j, P temp
ij ← ∅.

7: for each pair of bi, bj ∈ I; i ̸= j do
8: for each link e ∈ E do
9: if WL(e) = weight(bi, bj)

∗ then
10: P temp

ij ← P temp
ij

∪
{sp(bi, bj)} and record SE(sp(bi, bj)) =

weight(bi,bj)
sp

|sp(bi,bj)| .

11: else if WL(e) > weight(bi, bj)
∗ then

12: Etemp ← E\{e|e ∈ E and WL(e) < weight(bi, bj)
∗}

13: Find the shortest path sp′(bi, bj) between bi and bj in
G[Etemp], and P temp

ij ← P temp
ij

∪
{sp′(bi, bj)} and record SE(sp′(bi, bj)) =

weight(bi,bj)
sp′

|sp′(bi,bj)| .

14: end if/* we do not consider the case WL(e) < weight(bi, bj)
∗ */

15: end for
16: Choose the path p̃(bi, bj) with the largest value of SE in P temp

ij , and
C ← C

∪
(p̃(bi, bj)\{bi, bj}).

17: end for
18: Return D = I

∪
C.

Proof. We first rewrite Eq. (5) to

SE(pw
∗

ij ) = max
w∈WL

SEw(pij),where

SEw(pij) = max
pij∈Pij ,weight(pij)≥w

SE(pij),
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and WL = {WL(e)|∀e ∈ E}. Similarly, Eq. (6) can be rewritten as

SE(pspij ) = max
w∈WLsp

SEw(pij) and WLsp

= {WL(e)|WL(e) ≥ weight(sp(vi, vj)), e ∈ E}. Now, consider pw
∗

ij . Then,
by Eq. (5), there should be some w ∈ WL such that w ≤ weight(p∗ij). In
addition, by the definition of spectral-efficiency, we have SE(sp(vi, vj)) ≤
SE(p∗ij), which implies

weight(sp(vi, vj))

|sp(vi, vj)|
≤

weight(p∗ij)

|p∗ij|
.

Since sp(vi, vj) is the shortest path between vi and vj, we also have |sp(vi, vj)| ≤
|p∗ij|, which implies

min
w∈WL

w ≤ weight(sp(vi, vj)) ≤ weight(p∗ij).

Furthermore, the spectral-efficiency of a path is proportional to the weight
of the path. Therefore,

SE(pw
∗

ij )

= max
[

max
w∈WLsp

SEw(pij), max
w∈WL\WLsp

SEw(pij)
]

= max
w∈WLsp

SEw(pij) = SE(pspij ),

(7)

which completes the proof.

Based on the lemmas, we now introduce the spectrum-efficient virtual
backbone generater (SE-VBG) algorithm, which is a polynomial time cen-
tralized approximation for MSE-CDS. Algorithm 1 is the detail of SE-VBG.
In the preliminary phase (Line 1 in Algorithm 1), we compute the weight of
each edge, which can be finished in O(|E|) time. Largely, SE-VBG consists
of the following three steps.
Step 1. We compute an MIS I of a given UDG G via the classical scheme
in [8] with the time complexity of O(|V |). For each node bi ∈ I, we also
construct the set Ii ⊆ V \ I of the neighbors of bi in G. It is easy to find that
this step spends O(|I|) time.
Step 2. For each pair of nodes in I, we establish a referential (tentative)
path weight, which will be used as a guideline later to find a spectrum-efficient
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routing path for each pair of nodes in I so that the union of I and the nodes
in the path for each pair of nodes in I can form a CDS. That is, for each pair
bi, bj ∈ I, we select

weight(bi, bj)
∗ = min

[
weight(bi, bj)

sp,WN(bi),WN(bj)
]

as the minimum achievable spectral-efficiency of a path between bi and bj.
This process has the time complexity of O(|I|2). WN(bi) and WN(bj) are
being considered since the spectral efficiency of a route path in CDS with bi
and bj as two end points is at least the minimum of them. We also consider
weight(bi, bj)

sp since the maximum spectral efficiency of a path connecting
bi and bj can be smaller than WN(bi) and WN(bj).

Since the end-to-end spectral efficiency of a path is inversely proportional
to the length of the path (Eq. (3)) and we cannot find all paths between
every bi and bj within polynomial time. Therefore, we rather compute the
shortest path between each pair of nodes as well as consider corresponding
path weight to obtain a possible referential path weight. Remind that the
weight weight(bi, bj)

sp of a shortest path between two nodes bi, bj ∈ I is the
minimum weight of a link in the path.
Step 3. In this step, we find a subset C of nodes in V \ I as the connecters
for I such that I ∪C is connected. Our strategy for this step is that for each
pair of nodes bi, bj ∈ I, we identify a spectral-efficient path and add it to C.
By repeating this procedure for each pair of nodes, an empty subset C will
includes sufficient nodes such that I ∪ C is a CDS. For each pair bi, bj ∈ I,
we pick a set of links in E based on weight(bi, bj)

∗ such that the union of the
links can connect bi and bj as follows. First, we compare the weight of each
link in E, WL(e), with weight(bi, bj)

∗. Then, there are two possible cases.
Case 1. WL(e) = weight(bi, bj)

∗. In this case, WL(e) is equivalent to
the minimum of weight(bi, bj)

sp, WN(bi), and WN(bj). Since sp(bi, bj) is
with the minimal path length and the end-to-end spectral efficiency of a
path is inversely proportional to the path length, sp(bi, bj) has the maximum
spectral efficiency among all the paths between bi and bj. Therefore, we
choose sp(bi, bj) to be a candidate path between bi and bj.
Case 2. WL(e) > weight(bi, bj)

∗. In this case, we consider WL(e) as the
lower bound of link weight on the candidate path that we are looking for,
and compute the shortest path sp′(bi, bj) within G[Etemp], where Etemp =
E\{e|e ∈ E and WL(e) < weight(bi, bj)

∗}. Since the new shortest path
in G[Etemp] is with the minimal path length, this path is the one with the
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maximum spectrum-efficiency in the subgraph.
Note that the operation in Step 3 is virtually an iterative use of a shortest

path procedure. Furthermore, the case WL(e) < weight(bi, bj)
∗ is out of

consideration here based on Lemma 2. Finally, we choose the path with
largest spectral efficiency among the candidate paths for bi and bj and add
the intermediate nodes on the selected path to C. We can find that this step
has the time complexity of O(|I|2|E|).

On the whole, the time complexity of Algorithm 1 is O(|V |4). Now, we
provide the proof of correctness of Algorithm 1 for MSE-CDS as well as the
theoretical analysis of two interesting properties of the algorithm.

Theorem 2. Given a connected UDG G = (V,E), the output D of Algorithm
1 is a CDS satisfying three rules in Definition 1.

Proof. We first show the node set D obtained by Algorithm 1 meets the first
two conditions in Definition 1. After Step 1 of Algorithm 1, we obtain an
MIS I in G, which is a dominating set of G. Throughout Step 2 and Step
3, we add a set of nodes in the path connecting each pair of nodes in I to
C. Thus, D = I ∪ C is a CDS of G, which can satisfy Condition (i) and
Condition (ii) in Definition 1.

Next, we show that D also satisfies Condition (iii) in Definition 1, which
completes this proof. This condition dictates that for each pair of nodes
vi, vj ∈ V , the nodes in a maximum spectral-efficiency path p∗ij between vi
and vj in G should be included in D. In other words, there should be a path
pDij between vi and vj such that pDij \ {vi, vj} ⊆ D and pDij = p∗ij, where p∗ij
is a maximum spectral-efficiency path between vi and vj in G. Since after
Algorithm 1 is terminated, all nodes in G can partitioned into two subsets,
I and V \ I, one of the following three cases should be true: (i) vi ∈ I and
vj ∈ I, (ii) vi ∈ I and vj ∈ V \ I, and (iii) vi ∈ V \ I and vj ∈ V \ I.
Case 1. vi ∈ I and vj ∈ I. Let bi = vi ∈ I and bj = vj ∈ I. Remind that in
Step 2 of Algorithm 1, we compute a referential path weight weight(bi, bj)

∗

for each pair of nodes bi, bj ∈ I. In Step 3, for each pair bi, bj ∈ I, we only
consider the edges in E satisfying that WL(e) ≥ weight(bi, bj)

∗. After we
remove the edges whose weight is smaller than WL(e) from G, we compute
the shortest path between bi and bj from the residual graph and store the
path to P temp

ij . We repeat the process above for each e ∈ E with bi and bj
fixed, and we pick the path with the largest spectral-efficiency from P temp

ij .
By Lemma 2, the path we computed in this way is a maximum spectral
efficient path between bi and bj, i.e. p

D
ij = p∗ij. Therefore, p

∗
ij\{bi, bj} ⊆ D.
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Case 2. vi ∈ I and vj ∈ V \ I. Let bi = vi ∈ I and vq = vj ∈ V \ I. Then,
since I is a dominating set of G, there has to be a node bq ∈ I dominating
vq. Suppose p

∗(bi, vq) is the most spectral efficient path between bi and vq in
G. Then,

weight(p∗(bi, vq)) = min
[
weight(bi, bq)

∗,WL(bq, vq)
]
.

Since bi ∈ I and bq ∈ I, we have computed the following referential path
weight for the nodes in Step 2:

weight(bi, bq)
∗ = min

[
weight(bi, bq)

sp,WN(bi),WN(bq)
]
.

Note that since bq ∈ I,WN(bq) = min
vj∈Nq

{WL(bq, vj)}, which meansWN(bq) ≤

WL(bq, vq). Therefore, we can conclude that

weight(p∗(bi, vq)) ≥ weight(bi, bq)
∗.

By Lemma 2, this implies that the most spectral efficient path (shortest
path) from bi to bq computed in the residue graph in Step 3 of Algorithm 1
is a part of the shortest path between bi and vq, i.e. the union of the path
and the link from bq to vq forms the most spectral efficient path from bi to
vq. As a result, p∗(bi, vq)\{bi, vq} ⊆ D.
Case 3. vi ∈ V \I and vj ∈ V \I. We can easily prove p∗(vi, vj)\{vi, vj} ⊆ D
using the argument used in the proof of Case 2, where p∗(vi, vj) is the most
spectral efficient path between vi and vj in G.

From the analysis of the three cases above, we can conclude that D also
satisfies Condition (iii) in Definition 1. As a result, this theorem holds true.

Now, we introduce two interesting theorems regarding the performance
of this algorithm.

Theorem 3. Given a connected graph G = (V,E), suppose D is the out-
put of Algorithm 1 for the problem MSE-CDS. Then, |optSPCDS| ≤ |D| ≤
α · |optSPCDS|, where α = max∀vi,vj∈V

|p∗ij |
|sp(vi,vj)| , p

∗
ij and sp(vi, vj) are the max-

imum spectral efficiency routing path and the shortest path between vi and vj
in G respectively, and optSPCDS is the optimal solution for the shortest path
connected dominating set (SPCDS) problem in [17].
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Proof. Based on Theorem 1, we can obtain that D produced by Algorithm
1 can satisfy the third rule in Definition 1: for any pair of distinct nodes vi
and vj in V ,

pDij = p∗ij, (8)

where pDij is the path connecting vi, vj whose intermediate nodes all belong
to D and p∗ij is the maximum spectral efficiency routing path between vi and
vj in G. Furthermore, for any pair of nodes vi and vj in V ,

|sp(vi, vj)| ≤ |pDij | ≤ α′ · |sp(vi, vj)|

(Here we denote α′ as max∀vi,vj∈V
|pDij |

|sp(vi,vj)| , where pDij and sp(vi, vj) are the

path with all the intermediate nodes belonging to D and the shortest path
between vi and vj in G respectively). From Eq. (8), we can rewrite α′ as

α = max∀vi,vj∈V
|p∗ij |

|sp(vi,vj)| . Then we obtain that

|sp(vi, vj)| ≤ |pDij | ≤ α · |sp(vi, vj)| (9)

Now we recall that the SPCDS problem in [17] is formulated as follows:
the SPCDS problem is to find a minimum size node set S ⊆ V such that
∀u,w ∈ V having H(u,w) ≥ 2, ∀pi(u,w) = {u, v1, ..., vk, w} ∈ P (u,w), all
intermediate nodes v1, v2, ..., vk should belong to S. Here H(u,w) denotes
the number of hops on the shortest path between u and w and P (u, v) is a
path set composed by all shortest paths between u and w.

We denotes the optimal solution obtained from the proposed algorithm
in [17] as optSPCDS. Based on the above equations, the following conclusion
can be easily come to based on optSPCDS: optSPCDS ≤ |D| ≤ α · optSPCDS.
Thus, this theorem is true.

Theorem 4. Given a connected graph G = (V,E), suppose D is the output
of Algorithm 1 for the problem MSE-CDS. Without loss of generality, suppose

|pD(u1, v1)| ≥ |pD(u2, v2)|.

Then, for any two pairs of nodes in G, (u1, v1) and (u2, v2), 1 ≤ |pD(u1,v1)|
|pD(u2,v2)| ≤

β, where

β = max
∀vi,vj ,vi′ ,vj′∈V,i ̸=i′,j ̸=j′

|sp(vi, vj)|
|sp(vi′ , vj′)|

and pD(uk, vk) is the path with all the intermediate nodes belong to D between
uk and vk in G (k = 1, 2).
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Proof. For any two pairs of nodes in G, (u1, v1) and (u2, v2) (without loss of
generality, suppose that |pD(u1, v1)| ≥ |pD(u2, v2)|),

|pD(u1, v1)|
|pD(u2, v2)|

≤ max
pDij ,p

D
i′j′∈DP,i ̸=i′,j ̸=j′

|pDij |
|pDi′j′|

=
|pDmax|
|pDmin|

, (10)

where pDmax = argmaxpD
i′′j′′∈DP |pDi′′j′′ | and pDmin = argminpD

i′′j′′∈DP |pDi′′j′′ |. From
the analysis of the proof of Theorem 3, we find that |pDij | ≤ α · |sp(vi, vj)|
based on Eq. (9). Thus, we have that

|pDmax| ≤ α · |sp(maxi,maxj)| and
|pDmin| ≤ α · |sp(mini,minj)|,

(11)

where α = max
∀vi,vj∈V

|p∗ij|
|sp(vi, vj)|

,

and sp(maxi,maxj) and sp(mini,minj) are the shortest paths between the
two ends of pDmax and between the two ends of pDmin respectively. From Eq. (10)
and Eq. (11), we can conclude

|pD(u1, v1)|
|pD(u2, v2)|

≤ |sp(maxi,maxj)|
|sp(mini,minj)|

≤ max
∀vi,vj ,vi′ ,vj′∈V,i ̸=i′,j ̸=j′

|sp(vi, vj)|
|sp(vi′ , vj′)|

.

Then we can finally obtain that

1 ≤ |p
D(u1, v1)|
|pD(u2, v2)|

≤ β, where

β = max
∀vi,vj ,vi′ ,vj′∈V,i ̸=i′,j ̸=j′

|sp(vi, vj)|
|sp(vi′ , vj′)|

,

which completes the proof of this theorem.

6. Simulation Results

In this section, we compare the average performance of our algorithm,
SE-VBG, against the following three algorithms.
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Figure 1: Average performance comparison of SE-VBG, MOC-CDS [16], GOC-MCDS-
C [20], and PSCASTS [21].

• MOC-CDS [16]: its goal is to compute a smaller size CDS including a
shortest path between every pair of nodes in the original graph. MOC-
CDS generates CDS whose size is at most a constant factor far from
an optimal solution.

• GOC-MCDS-C [20]: its goal is to solve a similar problem tackled by
MOC-CDS. Unlike MOC-CDS, GOC-MCDS-C has a constant factor
performance ratio in terms of the size as well as the stretch factor of
CDS.

• PSCASTS [21]: its sole goal is to produce a CDS with smaller size. Das
et al. showed that PSCASTS outperforms all of the existing algorithms
in terms of the size of CDS on average.

In this simulation, we first set the size of a virtual space as 10 meters by
10 meters and randomly deploy a set of nodes whose number varies from
110 to 160. We assume the transmission range of each node is 1 meter. In
case a network instance is disconnected, we discard it and produce another
one until we obtain a connected network. Per each parameter setting, we
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Algorithm Msg Sent Msg Rcv’d Ratio
SE-VBG 36758 944 2.56815%
MOC-CDS 36758 896 2.43756%

GOC-MCDS-C 36758 896 2.43756 %
PSCASTS 36758 855 2.32602%

Table 1: Our result shows the throughput (the amount of packets delivered during a fixed
period) of SE-VBG is the highest.

produce 30 graph instances and execute each of the algorithms. For each
CDS generated, we measure the quality of it in terms of the following four
metrics, average spectral-efficiency (the average of spectral-efficiency of the
most spectral-efficient path over the CDS between every pair of nodes), av-
erage routing path length (the average of shortest path length over the CDS
between every pair of nodes), diameter (the longest path length over the
CDS between a pair of nodes), and size (the cardinality of CDS). To evalu-
ate the SNR, we follow the normalized parameter setting from [28], and set
α = 3, B = 1024, P = 100, N0 = 100, and c = 2. Fig. 1 illustrates the simula-
tion results. Fig. 1(a) shows the average spectral-efficiency of CDSs produced
by SE-VBG is much higher than the other algorithms. Note that based on
the results in [28], a path with higher spectral-efficiency than shortest hop
length has higher throughput. Therefore, the throughput of CDS produced
by SE-VBG is the highest on average. Still, Fig. 1(b) and Fig. 1(c) show
that the diameter and the average routing path length of CDS generated by
our algorithm are very competitive. Meanwhile, Fig. 1(d) shows the aver-
age size of CDS produced by SE-VBG is larger than CDSs produced by the
other competitors. This indicates that an algorithm trying to produce a CDS
with minimum cardinality may generate a CDS whose throughput is low as
implicitly concerned by many other previous work [16, 20]. After all, the re-
sults also indicate our algorithm produces a CDS with higher communication
efficiency in exchange of its size.

Finally, we conduct another simulation using OMNet++ to see which
algorithm produces a CDS with higher throughput. In this simulation, we
set the size of virtual space to 280 meters by 280 meters and randomly
deploy 50 nodes. We assume that each node has a probability of sending a
uniform length packet of 70 % per every 0.5 second to a random receiver.
We continue this simulation for 400 seconds and see how many packets are
actually delivered. We also set the transmission power of each node is 50mW,
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and the thermal noise is -85 dBm. Table 1 shows the result of this simulation.
Our result indicate that the CDS produced by SE-VBG has a higher spectral-
efficiency as well as higher throughput. Note that due to the smaller size,
the throughput of the CDS produced by PSCASTS is the lowest.

We would like to remind that the actual motivation of introducing the
concept of virtual backbone is to boost the performance of wireless networks
and several metrics such as the size of virtual backbone and the average hop
distance have served as abstract metric. However, our algorithm outperforms
the other competitors in terms of throughput, which is a performance metric
of real importance, and therefore, the fact that our algorithm produces a CDS
whose size is slightly larger than that produced by MOC-CDS on average does
not undermine the importance of our contribution significantly.

7. Concluding Remarks

In the literature, there are several arguments why virtual backbone should
be employed in wireless networks. The most widely used argument is that
by reducing the number of nodes involved in, we can reduce the amount of
wireless signal collision and interference as well as reduce burden of man-
aging routing related information, and therefore the network becomes more
efficient. Apparently, those benefits can be maximized by adopting a virtual
backbone with smaller size. However, as claimed in the other works, a mini-
mal size virtual backbone could cause communication inefficiency since any
two nodes may need to communicate with each other through a longer path
provided by the backbone.

In this paper, we tried to look at the one significant aspect of this problem
which has been ignored so far, throughput. Since the virtual backbone is a
kind of common communication utility in wireless networks, throughput is
clearly an important metric. This motivated us to investigate the possibil-
ity of applying a new metric, spectral-efficiency, in the design of a connected
dominating set computation algorithm in unit disk graph. In summary, there
are several metrics to be considered in the design of virtual backbone con-
struction algorithms. Especially, the size of virtual backbone seems to have a
trade-off relationship with the other metrics such as routing cost and through-
put. We believe that adopting a minimum size virtual backbone is not always
beneficial when we are trying to maximize the throughput. However, what is
the best balance between them to maximize the benefit of virtual backbone
should be further investigated.
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